

groovy programming

Barclay FM.qxd 6/11/06 1:50 PM Page 1

This page intentionally left blank

groovy programming
an introduction for
java developers

Kenneth Barclay

John Savage

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Morgan Kaufmann Publishers is an imprint of Elsevier

Barclay FM.qxd 6/11/06 1:50 PM Page 3

Publisher Denise E. M. Penrose
Publishing Services Manager George Morrison
Senior Editor Tim Cox
Assistant Editor Mary E. James
Project Manager Marilyn E. Rash
Cover Design Chen Design
Composition and Illustrations SPi
Production Services SPi
Interior printer Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color Corp.

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

© 2007 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered trade-
marks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names appear in
initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written permission of the
publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK:
phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete
your request online via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact” then
“Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Barclay, Kenneth A., 1947-

Groovy programming : an introduction for Java developers /
Kenneth Barclay, John Savage.

p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-12-372507-3 (alk. paper)
ISBN-10: 0-12-372507-0 (alk. paper)

1. Java (Computer program language) I. Savage, W. J. (W. John) II. Title.
QA76.73.J38B358 2006
005. 13'3–dc22 2006036352

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
07 08 09 10 5 4 3 2 1

Barclay FM.qxd 6/11/06 1:50 PM Page 4

To Irene
–K.B.

To Salwa
–J.S.

Barclay FM.qxd 6/11/06 1:50 PM Page 5

This page intentionally left blank

contents

vii

Foreword xiv

Preface xvi

About the Authors xix

1 Groovy 1
1.1 Why Scripting? 1
1.2 Why Groovy? 3

2 Numbers and Expressions 5
2.1 Numbers 6
2.2 Expressions 6
2.3 Operator Precedence 8
2.4 Assignment 9
2.5 Increment and Decrement Operators 10
2.6 Object References 11
2.7 Relational and Equality Operators 12
2.8 Exercises 14

3 Strings and Regular Expressions 17
3.1 String Literals 17
3.2 String Indexing and Slicing 18
3.3 Basic Operations 19
3.4 String Methods 19
3.5 String Comparison 23
3.6 Regular Expressions 23
3.7 Exercises 25

Barclay FM.qxd 6/11/06 1:50 PM Page 7

4 Lists, Maps, and Ranges 27
4.1 Lists 27
4.2 List Methods 29
4.3 Maps 31
4.4 Map Methods 33
4.5 Ranges 34
4.6 Exercises 35

5 Simple Input and Output 39
5.1 Simple Output 39
5.2 Formatted Output 41
5.3 Simple Input 42
5.4 Exercises 45

6 Case Study: A Library Application (Modeling) 47
6.1 Iteration 1: Specification and List Implementation 47
6.2 Iteration 2: Map Implementation 50
6.3 Exercises 52

7 Methods 53
7.1 Methods 53
7.2 Method Parameters 56
7.3 Default Parameters 56
7.4 Method Return Values 57
7.5 Parameter Passing 59
7.6 Scope 61
7.7 Collections as Method Parameters and Return Values 62
7.8 Exercises 63

8 Flow of Control 67
8.1 While Statement 67
8.2 For Statement 69
8.3 If Statement 71
8.4 Switch Statement 74
8.5 Break Statement 78
8.6 Continue Statement 79
8.7 Exercises 80

9 Closures 85
9.1 Closures 85
9.2 Closures, Collections, and Strings 90
9.3 Other Closure Features 96
9.4 Exercises 100

viii Contents

Barclay FM.qxd 6/11/06 1:50 PM Page 8

10 Files 103
10.1 Command Line Arguments 103
10.2 File Class 104
10.3 Exercises 111

11 Case Study: A Library Application (Methods,
Closures) 113
11.1 Iteration 1: Specification and Map Implementation 113
11.2 Iteration 2: Implementation of a Text-Based User Interface 119
11.3 Iteration 3: Implementation with Closures 122
11.4 Exercises 125

12 Classes 127
12.1 Classes 127
12.2 Composition 135
12.3 Exercises 137

13 Case Study: A Library Application (Objects) 139
13.1 Specification 139
13.2 Iteration 1: An Initial Model 140
13.3 Iteration 2: Augment the Model 142
13.4 Iteration 3: Reinstate the User Interface 147
13.5 Exercises 153

14 Inheritance 157
14.1 Inheritance 157
14.2 Inherited Methods 160
14.3 Redefined Methods 162
14.4 Polymorphism 163
14.5 The Abstract Class 166
14.6 The Interface Class 169
14.7 Exercises 173

15 Unit Testing (JUnit) 179
15.1 Unit Testing 179
15.2 The GroovyTestCase and JUnit TestCase Classes 181
15.3 The GroovyTestSuite and JUnit TestSuite Classes 186
15.4 The Role of Unit Testing 189
15.5 Exercises 193

Contents ix

Barclay FM.qxd 6/11/06 1:50 PM Page 9

16 Case Study: A Library Application
(Inheritance) 195
16.1 Specification 195
16.2 Iteration 1: Confirm the Polymorphic Effect 196
16.3 Iteration 2: Demonstrate the Required Functionality 199
16.4 Iteration 3: Provide User Feedback 204
16.5 Iteration 4: Enforce Constraints 212
16.6 Exercises 217

17 Persistence 219
17.1 Simple Queries 219
17.2 Relations 221
17.3 Database Updates 224
17.4 Objects from Tables 228
17.5 Inheritance 230
17.6 The Spring Framework 232
17.7 Exercises 237

18 Case Study: A Library Application
(Persistence) 239
18.1 Iteration 1: Persist the Domain Model 239
18.2 Iteration 2: The Impact of Persistence 251
18.3 Exercises 258

19 XML Builders and Parsers 259
19.1 Groovy Markup 259
19.2 MarkupBuilder 261
19.3 XML Parsing 264
19.4 Exercises 276

20 GUI Builders 277
20.1 SwingBuilder 277
20.2 Lists and Tables 286
20.3 Box and BoxLayout Classes 292
20.4 Exercises 294

21 Template Engines 297
21.1 Strings 297
21.2 Templates 298
21.3 Exercises 302

x Contents

Barclay FM.qxd 6/11/06 1:50 PM Page 10

22 Case Study: A Library Application (GUI) 303
22.1 Iteration 1: Prototype the GUI 303
22.2 Iteration 2: Implement the Handlers 306
22.3 Exercises 313

23 Server-Side Programming 315
23.1 Servlets 315
23.2 Groovlets 316
23.3 GSP Pages 324
23.4 Exercises 328

24 Case Study: A Library Application (Web) 329
24.1 Iteration 1: Web Implementation 329
24.2 Exercise 333

25 Epilogue 335

Appendices

A Software Distribution 337
A.1 The Java Development Kit 337
A.2 The Groovy Development Kit 338
A.3 Ant 338
A.4 The Derby/Cloudscape Database 338
A.5 The Spring Framework 339
A.6 The Tomcat Server 339
A.7 Eclipse IDE 339
A.8 The Textbook Sources 339

B Groovy 341
B.1 Simple and Elegant 341
B.2 Methods 343
B.3 Lists 344
B.4 Classes 344
B.5 Polymorphism 345
B.6 Closures 346
B.7 Exceptions 347

C More on Numbers and Expressions 349
C.1 Classes 349
C.2 Expressions 350
C.3 Operator Associativity 350

Contents xi

Barclay FM.qxd 6/11/06 1:50 PM Page 11

C.4 Variable Definitions 351
C.5 Compound Assignment Operators 353
C.6 Logical Operators 353
C.7 Conditional Operator 354
C.8 Qualified Numerical Literals 355
C.9 Conversions 355
C.10 Static Typing 358
C.11 Testing 358

D More on Strings and Regular Expressions 361
D.1 Regular Expressions 361
D.2 Single Character Match 362
D.3 Match at the Beginning 363
D.4 Match at the End 363
D.5 Match Zero or More 363
D.6 Match One or More 364
D.7 Match None or One 364
D.8 Match Number 364
D.9 Character Classes 365
D.10 Alternation 366
D.11 Miscellaneous Notations 366
D.12 Grouping 367

E More on Lists, Maps, and Ranges 369
E.1 Classes 370
E.2 Lists 371
E.3 Ranges 372
E.4 The Spread Operator 372
E.5 Testing 373

F More on Simple Input and Output 376
F.1 Formatted Output 376
F.2 Console Class 379

G More on Methods 382
G.1 Recursive Methods 382
G.2 Static Typing 384
G.3 Actual Parameter Agreement 386
G.4 Method Overloading 387
G.5 Default Parameter Ambiguity 387
G.6 Collections as Method Parameters and Return Values 389

xii Contents

Barclay FM.qxd 6/11/06 1:50 PM Page 12

H More on Closures 393
H.1 Closures and Ambiguity 393
H.2 Closures and Methods 394
H.3 Default Parameters 395
H.4 Closures and Scope 395
H.5 Recursive Closures 396
H.6 Static Typing 397
H.7 Actual Parameter Agreement 398
H.8 Closures, Collections, and Ranges 398
H.9 Return Statement 400
H.10 Testing 401

I More on Classes 404
I.1 Properties and Visibility 404
I.2 Object Navigation 409
I.3 Static Members 413
I.4 Operator Overloading 415
I.5 The invokeMethod 417
I.6 Exercises 419

J Advanced Closures 420
J.1 Simple Closures 421
J.2 Partial Application 423
J.3 Composition 425
J.4 Patterns of Computation 426
J.5 Business Rules 428
J.6 Packaging 432
J.7 List Reduction 439
J.8 Exercises 441

K More on Builders 445
K.1 AntBuilder 445
K.2 Specialized Builders 453

L More on GUI Builders 458
L.1 Menus and Toolbars 458
L.2 Dialogs 465

Bibliography 469

Index 471

Contents xiii

Barclay FM.qxd 6/11/06 1:50 PM Page 13

foreword

Scripting languages are not new. Primarily, they are used on Linux and
UNIX machines for things such as shell scripting tasks that automate soft-
ware installations, platform customizations, scientific application prototyp-
ing with Python, and one-shot command-line jobs with bash scripts.
Languages such as PHP have also been widely used for developing high-
volume websites and scripting languages have been found to be suitable for
serious business applications.

Usually, scripting languages are platforms on their own and do not nec-
essarily interact with others. Although bindings may exist for bridging with
other systems, the integration is not always intuitive or natural. Groovy seeks
to fill that gap, bringing a genuine innovative language that can interact
natively with Java by living on the same virtual machine.

Groovy brings a concise and expressive Java-like syntax to ease the learn-
ing curve for Java developers. But beyond the syntax, Groovy also provides
two key aspects to the landscape by providing wrapper APIs around common
JDK Application Programming Interfaces. It simplifies the implementation
of common tasks and integrates meta-programming capabilities to develop
powerful new language constructs or to easily manipulate existing ones.

Groovy can be used in various situations: as a shell scripting language to
do data crunching and file manipulation tasks or to experiment with new
APIs. It can also be adapted for creating full-blown small- to mid-size appli-
cations to leverage the wealth of Java libraries and components. Moreover,
another important use is to marry Java and Groovy by embedding Groovy
inside Java or Java EE applications. This can help write and externalize
often-changing business rules or bring programmatic configuration to an
application infrastructure.

Although the first two uses are quite common, I believe the embedded-
use case is the most appealing and promising. Currently, developers have
been using template engines for customizing and factoring out views, or they
have used business rules engines to externalize some logic. Beyond the

xiv

Barclay FM.qxd 6/11/06 1:50 PM Page 14

limited functionality set, however, programmers are often given little
support. Fortunately, platform-hosted scripting languages such as Groovy
can help bridge this functionality gap. This is evident with the success of
Groovy and its child—Grails—a versatile model-view-controller (MVC)
Web framework. Sun, too, believes in this alternative way of adding dynam-
icity to applications, by including a new Java Specification Request in Java 6:
the javax.script.* APIs allow seamless embedding of any scripting or
dynamic language into Java applications with a coherent programming API.

Scripting languages have evolved to a point of maturity where they meet
the limitations of the standardized mainstream platforms. When those lan-
guages and platforms come across, that’s when magic happens, and we can
celebrate a marriage made in Heaven.

Ken Barclay and John Savage are respected teachers and are well posi-
tioned to introduce Groovy to both experienced developers and novices.
They demonstrate in a clear manner how Groovy augments the Java plat-
form and how to exploit many of its innovative features. The book is easy to
read and not intimidating for those less experienced with programming. It
is a complete exposition of Groovy that addresses all aspects of the pro-
gramming language.

The structure of the book fulfills this aim by presenting the basics of
Groovy in the early chapters and more advanced concepts in the latter. In
addition, extensive appendices consider more detailed aspects of the lan-
guage.

Deliberately, each chapter is relatively small and easy to absorb, yet they
contain a large number of complete code examples, extensive exercises, and
solutions. To illustrate Groovy in application, the book features a rolling case
study that grows in complexity and sophistication by drawing on the mate-
rials from each preceding chapter. In addition, incremental development
and unit testing are central themes in the text and are necessary to support
Groovy’s dynamic nature. The authors also consider Groovy as a multipara-
digm language.

The authors’ own experience suggests that Groovy has a place in the aca-
demic curriculum as well as the experienced developer’s toolbox.

Have a fun time learning Groovy by reading this great book! You won’t
regret it.

Guillaume Laforge
Groovy Project Manager

JSR-241 Specification Lead

Foreword xv

Barclay FM.qxd 6/11/06 1:50 PM Page 15

preface

This book is an introduction to the scripting language Groovy. For Java
developers, Groovy makes writing scripts and applications for the Java plat-
form both fast and easy. It includes many language features found in other
scripting languages such as Python, Ruby, and Smalltalk. As Groovy is based
on Java, applications written in Groovy can make full use of the Java
Application Programming Interfaces (APIs). This means that Groovy inte-
grates seamlessly with frameworks and components written in Java.

Groovy, the scripting language, and Java, the systems programming
language, complement each other. Both contribute to the development of
programming applications. For example, components and frameworks
might be created with Java and “glued” together with Groovy. The ease with
which Groovy can make use of them significantly enhances their usage. The
increasing importance of component architectures, Graphical User
Interfaces (GUIs), database access, and the internet all increase the applica-
bility of scripting in Groovy.

Groovy developers can take advantage of rapid application development
features, such as those found in scripting languages. Groovy is suitable for
many data or file processing tasks, testing applications, or as a replacement
for Java in small- and medium-sized projects.

The syntax of Groovy is similar to the syntax of the Java programming
language. This makes for a relatively short learning curve for Java develop-
ers. Other scripting languages for the Java platform are usually based on ear-
lier predecessors. This is a major problem as they bring extra unwanted
“baggage.” However, as Groovy is Java, it offers a much more natural and
seamless integration into the Java platform.

xvi

Barclay FM.qxd 6/11/06 1:50 PM Page 16

organization

The text is designed to quickly introduce readers to the principal elements
of the Groovy language. It assumes at least a reading knowledge of Java. For
the later chapters, experience with Swing, Standard Query Language (SQL),
Spring, XML, Ant, and building Web applications would also be useful. The
authors have sought to keep each chapter relatively brief and closely focused.
Some readers may wish to dip into an individual chapter to pick out partic-
ular Groovy features. In any event, the shortness of each chapter should
make its contents relatively easy to absorb.

Many chapters are supported by an appendix to augment the topics cov-
ered. For example, Chapter 7 considers the basics of defining and using
Groovy methods. Appendix G then considers more advanced aspects, such
as overloading and recursion, which are not central to the main text. Again,
this helps to keep chapters short and targeted.

Most chapters also include many small, self-contained examples to illus-
trate language concepts. They are complete, and the reader is encouraged to
execute them as part of the learning process. There are also end-of-chapter
exercises, and the reader is encouraged to attempt them. However, both the
chapter examples and the solutions to the exercises are available on the
book’s website.

A feature of the book is a rolling case study concerned with managing
and maintaining a library’s loan stock. At various points in the text, new
Groovy features are applied to augment the functionality of the case study.
For example, the case study in Chapter 11 exploits methods, closures, and
files introduced in the preceding chapters.

Chapters 1 to 16 cover the basic features of Groovy. For example, there
are discussions of Groovy methods, closures, lists, and maps as well as
support for classes and inheritance.

The important topic of automated unit testing is also addressed.
Groovy’s rapid build-and-run cycle makes it an ideal candidate for develop-
ing unit tests. Groovy exploits the industry standard JUnit framework to
make unit testing both easy and fun. Unit testing used in conjunction with
Groovy combines the flexibility of a dynamically typed language with the
safety offered by statically typed languages. To highlight this point, unit test-
ing is an integral part of most of the case studies.

The second part of the book is presented in Chapters 17 to 24, where
Groovy is used for more advanced applications. For example, persistence is
implemented with the Spring framework in conjunction with the
Cloudscape/Derby relational database management system. Groovy also
supports XML and GUI applications through its novel builder notation. We
finish by considering templates and web applications.

Preface xvii

Barclay FM.qxd 6/11/06 1:50 PM Page 17

conventions

Throughout the book we use an arial typeface to identify Groovy code and
the output from scripts. We also italicize text when introducing a technical
term. The book includes references to websites and to the bibliography.

We do not distinguish between a program and a script. Both terms are
used interchangeably. However, we invariably mean a Groovy script.

software distribution

The authors have prepared a supporting website—http://www.dcs.
napier.ac.uk/~kab/groovy/groovy.html—that contains the working scripts
for all of the examples and case studies presented in the book. Answers to
the end-of-chapter exercises are also included.

Groovy is under constant review and is subject to revision. It is the aim
of the authors to use this website to keep the reader informed of significant
changes. Therefore, the reader is advised to consult it for up-to-date infor-
mation.

acknowledgments

The authors are deeply grateful to those involved in Groovy’s conception,
the committers that maintain its development, and those instrumental in
the Java Specification Request (JSR-241) initiative (http://www.dcs.
napier.ac.uk/~cs05/groovy/groovy.html). This book is our contribution to
publicizing the Groovy language. We are indebted to Guillaume Laforge
(Groovy Project Manager) who keeps Groovy “on-track” and to Andrew
Glover (CTO, Vanward Technologies) for his excellent articles on Groovy on
the IBM Developers website. We are also grateful for the encouragement
and stimulation given by Professor Jon Kerridge (School of Computing,
Napier University, Edinburgh) who sent us Groovy challenges that we might
not otherwise have taken up.

The authors also wish to thank Denise Penrose, Tim Cox, Mary James,
Christine Brandt, and their colleagues at Morgan Kaufmann, Elsevier for
their help in the production of this book. Finally, we are grateful for the many
helpful suggestions from our reviewers Andrew Glover and Sean Burke. Any
outstanding errors in the text are the responsibility of the authors.

xviii Preface

Barclay FM.qxd 6/11/06 1:50 PM Page 18

xix

Ken Barclay and John Savage are lecturers in computer science at Napier
University in Edinburgh, Scotland. They both have more than 25 years of
experience teaching software development to students and professionals in
commerce and industry. They have been actively involved with the evolution
and development of object-oriented practices in C++, Java, Ada, and the
Unified Modeling Language (UML).

Since their first involvement with object orientation, they have led the
development of the ROME project—an object modeling tool—that is dis-
tributed with their books on object orientation and the UML. They are the
authors of several publications about software development, including
Object-Oriented Design with UML and Java (Butterworth-Heinemann/
Elsevier, 2003).

about the authors

Barclay FM.qxd 6/11/06 1:50 PM Page 19

This page intentionally left blank

1

CHAPTER1
groovy

This first chapter introduces Groovy as a unique scripting language designed to
augment the Java platform. It offers Javalike syntax, native support for Maps and
Lists, methods, classes, closures, and builders. With its dynamic weak typing
and seamless access to the Java Applications Programming Interface (API), it is
well suited to the development of many small- to medium-sized applications.

1.1 why scripting?

Generally, scripting languages such as Groovy are more expressive and operate at
higher levels of abstraction than systems programming languages such as Java. This
often results in more rapid application development and higher programmer
productivity. However, scripting languages serve a different purpose than their sys-
tems language counterparts. They are designed for “gluing” applications together
rather than implementing complex data structures and algorithms. Therefore, to be
useful, a scripting language must have access to a wide range of components.

In general, scripting languages do not replace systems programming
languages. They complement them (Ousterhout, 1998). Typically, systems
programming languages should be used in applications that

● require the development of complex algorithms or data structures

● are computationally intensive

● manipulate large datasets

● implement well-defined, slowly changing requirements

● are part of a large project.

Barclay chap01.qxd 02/01/1904 9:51 PM Page 1

However, scripting languages should be used for applications that

● connect preexisting components

● manipulate a variety of different entities that change rapidly

● have a graphical user interface

● have rapidly evolving functionality

● are part of a small- to medium-sized project.

A major strength of scripting languages is that the coding effort they require is
relatively small as compared to code written in a systems programming
language. Often, the latter appears to be overly complex and difficult to
understand and maintain. This is because it requires extensive boilerplate or
conversion code.

These systems languages are strongly typed to ensure the safety and robust-
ness of the code. With strong typing, variables must been given a type and they
can only be used in a particular way. Although strong typing makes large pro-
grams more manageable and allows a compiler to (statically) detect certain kinds
of errors, it can be intrusive. For example, strong typing is not helpful when it
is difficult or impossible to decide beforehand which type of a variable it is. This
situation occurs frequently when connecting components together.

To simplify the task of connecting components, scripting languages are
weakly typed. This means that variables can be used in different ways under
different circumstances. However, illegal use of variables is only detected when
the code is actually executing. For example, although Groovy (statically) checks
program syntax at compile time, the (dynamic) check on the correctness
of method calls happens at runtime. As a result, there is the danger that a
Groovy script that compiles cleanly may throw an exception and terminate
prematurely.

Weak typing does not necessarily mean that code is unsafe or that it is not
robust. Advocates have promoted Extreme Programming (Beck, 2004) as a soft-
ware development process. This approach is characterized by an emphasis on
testing. The result is a comprehensive suite of unit tests (Link, 2003) that drive
the development. As a consequence, they help ensure the safety and robustness
of the code by executing it in a wide variety of different scenarios. This is the basis
of the approach we take when developing Groovy scripts. In fact, experience has
shown that the combination of weak typing and unit testing in a scripting lan-
guage is often better than strong type checking in a traditional systems
programming language (see http://www.mindview.net/WebLog/log-0025). We
have both the flexibility of weak typing and the confidence of unit testing.

2 C H A P T E R 1 Groovy

Barclay chap01.qxd 02/01/1904 9:51 PM Page 2

1.2 why groovy?

The Java compiler produces bytecodes that execute on the Java Virtual Machine
(JVM). Groovy classes are binary compatible with Java. This means that the
bytecodes produced by the Groovy compiler are the same as those produced by
the Java compiler. Hence, Groovy is Java as far as the JVM is concerned. This
means that Groovy is able to immediately exploit the various Java APIs such as
JDBC for database development (Fisher et al., 2003) and Swing for developing
GUI applications (Topley, 1998).

Groovy aims to shift much of the “heavy lifting” from the developer to the
language itself. For example, when adding a button to a GUI, we simply specify
the code to execute when the button is pressed. There is no need to add an event
handler to the button as an instance of a class implementing a particular
interface. Groovy does this for us.

Groovy is an object-oriented scripting language in which everything is an
object. Unlike Java, there are no exceptions to this rule. This brings an important
element of uniformity to the language. Groovy is also dynamically typed so that
the notion of a type lies within the object, not the variable that references it. An
immediate consequence is that Groovy does not require the declaration of the
type of a variable, method parameter, or method return value. This gives it the
beneficial effects of significantly shrinking the code size and giving the program-
mer the freedom to defer type decisions to runtime.

Groovy also seeks to unify instance fields and methods declared in classes
by supporting the concept of a property. A property removes the distinction
between an instance field (attribute) and a method. In effect, a client considers
a property as the combination of the instance field and its getter/setter methods.

Important data structures, Lists and Maps, are native to the Groovy language.
A List object or a Map object can be directly expressed in a Groovy script. For
novice developers and professionals alike, the immediacy of Lists and Maps can
make their programming tasks that much simpler. Complementing Lists and
Maps are iterator methods, such as each, that simplify how the elements in these
collections are to be processed. The processing itself is described by a closure—an
object that represents a code block. This immensely useful construct can be
referenced by variables, parameterized to generalize its applicability, passed as a
parameter to methods and other closures, and can be an instance field of classes.
It has a huge effect on programming in Groovy.

Hierarchical data structures like XML can also be directly represented in a
Groovy script with Groovy builders. Using notations found in XPath (see
http://www.w3.org/TR/xpath20/), Groovy readily expresses the traversal of these
structures and how to reference their parts. Once again, an iterator and a clo-
sure provide the mechanism to process them.

1.2 why groovy? 3

Barclay chap01.qxd 02/01/1904 9:51 PM Page 3

Groovy builders are generally applicable to any nested tree-structure. For
example, they can be used to describe a graphical application that is assembled
from various component widgets. Here, too, closures play a part, this time
operating as event handlers for components such as menu items and buttons.
Standard Query Language (SQL) processing also has the same uniform
approach. Again, an iterator method such as eachRow combines with a closure
to express how to process the rows of a database table.

4 C H A P T E R 1 Groovy

Barclay chap01.qxd 02/01/1904 9:51 PM Page 4

5

C H A P T E R 2
numbers and
expressions

In this chapter, we are concerned with how we manipulate basic numeric values
in Groovy. When doing so, we must be especially conscious that Groovy has
been constructed as an object-oriented language. This means that everything in
Groovy is ultimately an object—an instance of some class. For example, we are
all familiar with the integer value 123. In Groovy, this is actually an object
instance of the class Integer. To make an object do something, we know that
we must invoke one of the methods declared in its class. Hence, to obtain
the absolute value of such an integer, the Groovy environment invokes the
method abs with the expression 123.abs(). Equally, to ask 123 for the value that
follows it (124), the Groovy environment calls the successor method, next, as
in 123.next().

Because of this, if we wish to find the arithmetic sum of the values 123 and
456, then we might expect the Groovy environment to invoke the + method on
the Integer object 123 as in 123.+(456). The Integer object 456 is the method
parameter. This, of course, is hopelessly counterintuitive to the arithmetic skills
we developed at school. Fortunately, Groovy also supports operator overloading
(see Appendix I). This way, the + method can be presented as a binary operator
between its operands, resulting in the more natural expression 123 + 456.
However, we should always be prepared to recollect that this is ultimately a
method call to one object with the other object as a method parameter. In truth,
for this example, the actual method call used by Groovy is entitled plus as in
123.plus(456).

This chapter deals with the manipulation of arithmetic values in a relatively
straightforward manner. However, it is an important field of study in its own
right, and we present a more detailed discussion in Appendix C.

Barclay chap02.qxd 02/01/1904 9:52 PM Page 5

2.1 numbers

Groovy supports integer and floating point numbers (literals). An integer is a
value that does not include a fraction. A floating-point number is a decimal
value that includes a decimal fraction.

An integer is a whole number that may be positive, negative, or zero. Some
examples of integer literals are 12345, –44, and 0. As noted earlier, each is an
instance of the class Integer.

Numbers with a fractional part are represented as an instance of the class
BigDecimal. Some examples of floating point literals are 1.23, –3.1415926. Note
that a floating point literal must start with a decimal point to avoid ambiguity.
We must present the fraction as 0.25 and not as .25. Equally, the negative of
this same value must be presented as –0.25.

The classes for these simple numeric types are further explored in Appendix C.

2.2 expressions

Groovy supports an extensive collection of operators applicable to the numeric
types. This includes the normal arithmetic operators as well as comparison
operators, bitwise operators, and other miscellaneous operators. An expression is
used to describe some computation and is a mix of operators and operands. The
arithmetic operators are addition (+), subtraction (−), multiplication (*), and
division (/). Also supported is the modulus operator, denoted by the percent
symbol (%), used to compute the remainder upon dividing two integers. Table
2.1 shows various arithmetic operations applied to integer literals.

Note that division of two integers always results in a floating point value
even when an integer might be expected. For example, the expression 6/3 produces
the floating point value 2.0 and not the integer value 2.

6 C H A P T E R 2 Numbers and Expressions

TABLE 2.1 Integer arithmetic

Expression Method call Result

5 + 3 5.plus(3) 8
5 - 3 5.minus(3) 2
5 * 3 5.multiply(3) 15
5 / 3 5.divide(3) 1.6666666667
5 % 3 5.mod(3) 2

Barclay chap02.qxd 02/01/1904 9:52 PM Page 6

These same arithmetic operators can be applied to two floating point
values. The results are shown in Table 2.2. The modulus operator applied to
floating point values is discussed separately following the table.

Again, with the exception of the modulus operator, Groovy’s arithmetic
operators can also be applied to combinations of integer and floating point val-
ues. Some examples are shown in Table 2.3.

As shown by the tables, the division operator behaves normally, regardless
the combination of integers and floating point values. All the following combi-
nations yield the floating point value 2.6:

13.0 / 5
13 / 5.0
13 / 5

To obtain the integer quotient of two integer values we must use the intdiv
method,

13.intdiv(5)

which yields the integer value 2.

2.2 expressions 7

TABLE 2.2 Floating point arithmetic

Expression Method call Result

5.0 + 3.0 5.0.plus(3.0) 8.0
5.0 - 3.0 5.0.minus(3.0) 2.0
5.0 * 3.0 5.0.multiply(3.0) 15.0
5.0 / 3.0 5.0.divide(3.0) 1.6666666667

TABLE 2.3 Mixed arithmetic

Expression Method call Result

5 + 3.2 5.plus(3.2) 8.2
5.6 + 3 5.6.plus(3) 8.6
5 - 3.2 5.minus(3.2) 1.8
5.6 - 3 5.6.minus(3) 2.6
5 * 3.2 5.multiply(3.2) 16.0
5.6 * 3 5.6.multiply(3) 16.8
5 / 3.2 5.divide(3.2) 1.5625
5.6 / 3 5.6.divide(3) 1.8666666667

Barclay chap02.qxd 02/01/1904 9:52 PM Page 7

The modulus operator (%) yields the integer remainder from the division of
two integer operands. Therefore,

13 % 5 evaluates to 3
15 % 5 evaluates to 0

Note that it is illegal to invoke the mod method on a floating point value or on
an integer value with a floating point parameter. Hence, the expressions 13.0 %
5.0, 13.0 % 5, and 13 % 5.0 all report that the method mod may not be invoked.

2.3 operator precedence

As with normal, everyday formulas, an expression in Groovy is evaluated
according to the precedence of its operators. The precedence, or priority, of an
operator dictates the order of evaluation in arithmetic expressions. Table 2.4
shows the precedence of the basic arithmetic operators. (For a full list and
a discussion of the associativity of operators, see Appendix C.)

From Table 2.4, multiplication, division, and the modulus operators are
shown to have the highest equal precedence, while addition and subtraction
have the lowest equal precedence. An expression involving a mixture of these
operators will first perform all multiplication, division, and modulus operations,
and then any addition or subtraction. Thus,

2 + 3 * 4

yields 14, since 3 is first multiplied by 4, giving 12, and then 2 is added to that
result, producing 14.

Appendix C explores how associativity is used in determining how an
expression such as 2 + 3 * 4 + 5 is evaluated. For the present, should we wish to
ensure that the additions are performed before the multiplication, then we can
use parentheses as in the expression (2 + 3) * (4 + 5), which yields 45.

8 C H A P T E R 2 Numbers and Expressions

TABLE 2.4 Arithmetic operators

Category Operators Example Associativity

Multiplicative * / % x * y Left to right
Additive + / – x + y Left to right

Barclay chap02.qxd 02/01/1904 9:52 PM Page 8

2.4 assignment

The assignment operator allows the assignment of some value to a program
variable. The simplest form of the assignment statement is:

variable = expression

The effect of the assignment operator (=) is to evaluate the expression to its right,
and the resulting value is then assigned to the variable on its left. Examples of
assignment are

interest = principal * rate * time / 100
speed = distance / time
totalMinutes = 60 * hours + minutes
count = count + 1

The first example computes the simple interest on a sum of money (the principal)
invested at a given rate for a given period of time. The second example finds
the speed of an object, given the distance traveled and the elapsed time. The
third example converts a time expressed as hours and minutes into a total
number of minutes. The final example adds one to the current value for count.

The Groovy keyword def is required when a variable is used in a script for
the first time. Its purpose is to introduce the variable definition. However, it is
not required when the variable is used in subsequent assignments. Appendix C
discusses this and related points in more detail. An example is:

def count = 0 // define and initialize
count = count + 1 // increase current value by one

Variables have names by which they can be referenced. These names are known
as identifiers and are created by the programmer. A Groovy identifier is governed
by the following rule:

An identifier is a case-sensitive combination of letters and digits, the first of which must be a
letter. The underscore symbol (_) is permitted in an identifier and is considered to be a letter.
An identifier must not be a Groovy keyword (see Appendix C).

Notice that we say age = 25, assuming that we have previously defined (def) age
as a variable. For the moment, it is enough to realize that the assignment of 25
to the identifier age happens correctly. Further assignments to the variable age
simply change its value. Here, age would be understood to refer to an integer
value (see Section 2.6).

2.4 assignment 9

Barclay chap02.qxd 02/01/1904 9:52 PM Page 9

2.5 increment and decrement
operators

Groovy also supports two unary operators for adding or subtracting 1 from the
value of a numeric variable. A unary operator is one that applies to a single
operand. They are known as the increment operator, + +, and the decrement
operator, – –, respectively. Rather than have:

value = value +

we can write:

value+ +

Similarly, we can have:

value– –

instead of:

value = value – 1

Strictly, an increment or decrement operator placed before a variable is referred
to as the preincrement or predecrement operator. An increment or decrement
operator placed after a variable is referred to as the postincrement or postdecrement
operator. Preincrementing a variable causes the variable to be incremented by
1 and then the new value is used in the expression in which it appears.
Postincrementing a variable causes the variable to be used in the expression in
which it appears and then incremented by 1. Predecrementing and postdecre-
menting are similar.

So, for example, x++ gives the original value for x to be used in the rest of
the expression, and then increments it. Equally, ++x increments x, then delivers
this new value. Thus,

def x = 10
def y = x++ // x has value 11; y has value 10

and

def p = 20
def q = ++p // p has value 21; q has value 21

10 C H A P T E R 2 Numbers and Expressions

Barclay chap02.qxd 02/01/1904 9:52 PM Page 10

The two increment operators are implemented with the next method call. Thus,
x++ is realized as x.next(). Similarly, the decrement operators use the previous
method call.

2.6 object references

In the assignment age = 25, we are exploiting Groovy’s dynamic typing ability.
The type of the value referenced by the variable age is determined at runtime,
not during compilation. Dynamic typing often makes programming easier, and
it is also the reason why Groovy is both concise and flexible. Execution of this
assignment creates an Integer object with the value 25, and then makes the vari-
able age reference it as shown in Figure 2.1.

The linkage between the variable and the object is known as a reference. The
variable is said to refer to that part of memory occupied by the object. Any use
of the variable, such as in the expression age + 22, uses this reference to obtain
the object value associated with the variable.

Now consider the assignments:

def age = 25
def number = age

In Groovy, variables are always linked to objects. Hence, the effect of the sec-
ond assignment is to have the number variable reference the same object as the
variable age. This is shown in Figure 2.2 and is an example of sharing (or alias-
ing), for example, two variables referencing the same object.

If later in our code we assign a new value to the variable age, then the effect
is demonstrated in Figure 2.3. Here, we show that the age variable now refer-

2.6 object references 11

variables object

age 25

number
def number = age

FIGURE 2.2 Sharing

variable

def age = 25

object

age 25

FIGURE 2.1 Variables and object referencing

Barclay chap02.qxd 02/01/1904 9:52 PM Page 11

ences a different object while the number variable continues to reference the
object first established by the assignment to age.

Finally, we consider the effect of assigning a new value to the number
variable. Figure 2.4 reveals that the object representing the value 25 is now no
longer referenced by any variable. Hence, we can never use it in any further
code. It is an example of garbage, namely, an unreferenced object. In Groovy,
a garbage collector will eventually sweep up the memory space occupied by the
object and recycle its memory space for other uses.

These figures have demonstrated that we are free to assign new values to
variables at any point in our code. Further, the new value may have a different
type from the existing value. This is both a strength and a weakness of Groovy.
For example, we are free to assign a String value to what was previously an
Integer referenced by some variable. The danger is that we may fail to recognize
this in our code and produce some unexpected behavior.

2.7 relational and equality
operators

Some Groovy control statements, such as the if and the while statements (see
Chapter 8), use a condition. A condition determines the truth or falsehood of

12 C H A P T E R 2 Numbers and Expressions

variables objects

age 25

30

age = 30

number

FIGURE 2.3 New assignment

variables objects

age 25

30

35
number = 35

number

FIGURE 2.4 Garbage

Barclay chap02.qxd 02/01/1904 9:52 PM Page 12

some expression. These conditional expressions yield values that are either true
or false. The relational, equality, and logical operators are used to form conditional
expressions (see Appendix C for a discussion of the latter).

The relational operators are shown in Table 2.5. All four are binary operators.
Each takes two arithmetic expressions as operands and yields the boolean value
either true or false. Both are instances of the class Boolean. All of these
operators are realized with the compareTo method call (Table 2.5). For example,
a < b is implemented as a.compareTo(b) < 0. The method compareTo returns −1 if
a is less than b, +1 if a is greater than b, or 0 if they are the same. This method
is also used as the basis for sorting values.

Some examples of expressions using the relational operators are:

number < 0 // is number negative?
age >= 65 // is this a senior citizen?
index <= limit – 1 // has the limit been reached?

Since these relational operators have a lower precedence than the arithmetic
operators (see Appendix C), the last illustration is interpreted as index <=
(limit – 1).

The equality operators == and != are presented in Table 2.6. Again, they are
binary operators and produce the boolean value true or the boolean value false.
Both operators are implemented using the equals method. The compareTo
operator is denoted by <=> and has the same precedence as the other two.

2.7 relational and equality operators 13

TABLE 2.5 Relational operators

Expression Method call Result

5 < 3 5.compareTo(3) < 0 false
5 <= 3 5.compareTo(3) <= 0 false
5 > 3 5.compareTo(3) > 0 true
5 >= 3 5.compareTo(3) >= 0 true

TABLE 2.6 Equality operators

Expression Method call Result

5 == 3 5.equals(3) false
5 != 3 ! 5.equals(3) // see Appendix C true
5 <=> 3 5.compareTo(3) +1

Barclay chap02.qxd 02/01/1904 9:52 PM Page 13

Some examples are:

def forename = “Ken”
def surname = “Barclay”

forename == “Ken” // true
surname != “Barkley” // true

Once again these equality operators ultimately become method calls. For
example, the condition forename == “Ken” is actually implemented as fore-
name.equals(“Ken”). The method equals is programmed in the String class to
determine whether the two values are the same. Similarly, if we have the two
assignments:

def age = 25
def number = 25

then the condition:

age == number

produces the boolean value true. Here, the message age.equals(number) is eval-
uated using the method equals defined in the class Integer.

2.8 exercises

1. Which of the following are valid Groovy literal values?
(a) −123 (b) .123 (c) 0.123
(d) 10.0e4 (e) 10E4
For each that is valid, identify its class.

2. Use the rules of precedence and associativity to evaluate the following:
(a) def m = 5

12*m

(b) m = 5
def j = 2
12*m/j

(c) def f = 1.2
(f+10)*20

(d) def g = 3.4
f = 1.2
12*(g–f)

14 C H A P T E R 2 Numbers and Expressions

Barclay chap02.qxd 02/01/1904 9:52 PM Page 14

3. Give your reasons for deciding which of the following are valid Groovy
identifiers.
(a) June (b) a$ (c) b
(d) _Z (e) name1 (f) public

4. Develop four diagrams in the style of Figure 2.1 to demonstrate the effect
of the following:

def value = 42
def anotherValue = value
value = 99
anotherValue = 50

What is the role of the garbage collector in this context?

5. Use the rules of precedence and associativity to evaluate the following:
(a) def x = 12

def y = 2
x + 3 <= y*10

(b) x = 20
y = 2
x + 3 <= y*10

(c) x = 7
y = 1
x + 3! = y*10

(d) x = 17
y = 2
x + 3 == y*10

(e) x = 100
y = 5
x + 3 > y*10

2.8 exercises 15

Barclay chap02.qxd 02/01/1904 9:52 PM Page 15

This page intentionally left blank

17

C H A P T E R 3
strings and
regular
expressions

The previous chapter was concerned with numeric values and the basic arithmetic
operations associated with them. In this chapter, we consider Strings—an ordered
sequence of characters used to represent textual information. This information
might represent the name for an individual or file. Equally, it may represent a
bank account number or the name of a programming language. We give further
details on using Strings and regular expressions for Appendix D.

3.1 string literals

A String literal is readily constructed by enclosing the string text in quotations.
Groovy offers a variety of ways to denote a String literal. For example, Strings
in Groovy can be enclosed in single quotes (’), double quotes (“), or triple quotes
(“””). Further, a Groovy String enclosed by triple quotes may span multiple
lines. Table 3.1 presents some String literals.

Note how the second example has double quotes nested within the outer
single quotes. Equally, the third example has single quotes nested within the
outer double quotes. In both, it is not necessary to escape these with the back-
slash escape character as, for example, in ’He said \”Hello\”!’. The final example
shows text spanning multiple lines. This String literal includes the newline
characters at the ends of each line.

A String enclosed in single quotes is taken literally. The other two forms of
String are said to be interpreted. Any expression presented as ${expression}

Barclay chap03.qxd 02/01/1904 9:53 PM Page 17

within an interpreted String is evaluated and the result is then part of the
String. The following examples illustrate this effect.

def age=25
’My age is ${age}’ // My age is ${age}
“My age is ${age}” // My age is 25
“””My age is ${age}””” // My age is 25
“My age is \${age}” // My age is ${age}

Observe how in the first example interpretation does not apply to single-quoted
Strings. Also, observe how, in the final example, escaping the dollar sign with
the backslash escape character is required to turn off its use of interpretation.
Our normal practice is to use double-quoted Strings only where interpretation
is required. Otherwise, we use single-quoted Strings.

3.2 string indexing and slicing

Because Strings are ordered sequences of characters, we access an individual
character by its position in the String. This is given by an index position. Note
that positions can specify either a single character or a subset of characters.
Either way, a String value is returned. String indices start at zero and end at
one less than the String length. Groovy also permits negative indices to count
back from the end of the String. String subsets can also be expressed using
slicing. A slice allows us to extract a subsection of the String.

Consider the following String object referred to as greeting together with
some sample indexing and slicing.

def greeting=’Hello world’
greeting[4] // o index from start
greeting[–1] // d index from end
greeting[1..2] // el slice with inclusive range (see Chapter 4)
greeting[1..<3] // el slice with exclusive range (see Chapter 4)

18 C H A P T E R 3 Strings and Regular Expressions

TABLE 3.1 String literals

Literal Description

’’ Empty string
’He said “Hello”!’ Single quotes (with nested double quotes)
“He said ’Hello’!” Double quotes (with nested single quotes)
“””one two three””” Triple quotes
“””Spread Multi-line text using triple quotes
over
four
lines”””

Barclay chap03.qxd 02/01/1904 9:53 PM Page 18

greeting[4..2] // oll backward slice
greeting[4, 1, 6] // oew selective slicing

Note how slicing is denoted by 1..2 or 1..<3. This notation is known as a range
and is discussed fully in Chapter 4. Suffice it to say that 1..2 is the index range
1 to 2 inclusive. The range denoted as 1..<3 is the exclusive range and includes
all values starting from 1 and ending at the integer value less than 3.

3.3 basic operations

The basic String operations include the concatenation of two Strings,
duplicating Strings, and finding the length of a String. The minus method (or
the overloaded – operator) removes the first occurrence of a substring. The
method count determines the number of occurrences of a substring, while con-
tains determines whether a String contains a given substring. Examples are:

def greeting=‘Hello world’
’Hello’+‘world’ // Hello world concatenate
‘Hello’* 3 // HelloHelloHello repeat
greeting– ‘o world’ // Hell remove first occurrence
greeting.size() // 11 synonymous with length
greeting.length() // 11 synonymous with size
greeting.count(‘o’) // 2
greeting.contains(‘ell’) // true

Note how the first three examples illustrate operator overloading as introduced
in the preceding chapter. For example, ‘Hello’+‘world’ represents “Hello”.
plus(“world”). The plus method is invoked on the String object “Hello” and
is passed the String parameter “world”.

Groovy Strings are immutable ; they cannot be changed in place. We create
a new String object by indexing, slicing, and concatenating other String
objects. Hence, the illustration greeting–‘o world’ delivers the new String
‘Hell’. The String object greeting is unchanged.

3.4 string methods

The String class includes many useful methods to manipulate String objects.
Table 3.2 tabulates and describes some of the more common methods. The
Signature/description column documents the name, number, type of parameters,
and return type of the method. It also includes a short description of the effect
of the method.

Appendix B describes how Groovy augments the classes of the Java
Development Kit (JDK) by including additional methods. The Java String
class includes methods such as concat, endsWith, and length (see

3.4 string methods 19

Barclay chap03.qxd 02/01/1904 9:53 PM Page 19

http://java.sun.com/j2se/1.5.0/docs/api/index.html). The Groovy Development
Kit (GDK) specifies the additional String class methods center, getAt,
leftShift, and so on (see http://groovy.codehaus.org/groovy-jdk.html). These
additional methods have been identified in Table 3.2 with an asterisk.

20 C H A P T E R 3 Strings and Regular Expressions

TABLE 3.2 String methods

Name Signature/description

center * String center(Number numberOfChars)
Returns a new String of length numberOfChars consisting of the
recipient padded on the left and right with space characters.

center * String center(Number numberOfChars, String padding)
Returns a new String of length numberOfChars consisting of the
recipient padded on the left and right with padding characters.

compare- int compareToIgnoreCase(String str)
ToIgnoreCase Compares two strings lexicographically, ignoring case differences.
concat String concat(String str)

Concatenates the specified String to the end of this String.
eachMatch * void eachMatch(String regex, Closure clos)

Processes each regex group (see next section) matched substring of
the given String. The object passed to the closure (see Chapter 9) is
an array of strings, following a successful match.

endsWith Boolean endsWith(String suffix)
Tests whether this string ends with the specified suffix.

equalsIgnore- Boolean equalsIgnoreCase(String str)
Case Compares this String to another String, ignoring case considerations.
getAt * String getAt(int index)

String getAt(IntRange range)
String getAt(Range range)
The subscript operator for a String.

indexOf Int indexOf(String str)
Returns the index within this String of the first occurrence of the
specified substring.

leftShift * StringBuffer leftShift(Object value)
Overloads the leftShift operator to provide an easy way to append
multiple objects as String representations to a String.

length int length()
Returns the length of the String.

matches Boolean matches(String regex)
Tells whether a String matches the given regular expression.

minus * String minus(Object value)
Remove the value part of the String.

next * String next()
This method is called by the ++ operator for the class String. It incre-
ments the last character in the given String.

Barclay chap03.qxd 02/01/1904 9:53 PM Page 20

3.4 string methods 21

padLeft * String padLeft(Number numberOfCharacters)
Pad the String with the spaces appended to the left.

padLeft * String padLeft(Number numberOfCharacters, String padding)
Pad the String with the padding characters appended to the left.

padRight * String padRight(Number numberOfCharacters)
Pad the String with the spaces appended to the right.

padRight * String padRight (Number numberOfCharacters, String padding)
Pad the String with the padding characters appended to the right.

plus * String plus(Object value)
Appends a String.

previous * String previous()
This method is called by the – operator for the class String. It decre-
ments the last character in the given String.

replaceAll void replaceAll(String regex, Closure clos)
Replaces all occurrences of a captured group by the result of a closure
on that text.

reverse * String reverse()
Creates a new String which is the reverse of this String.

size * int size()
Returns the length of the String.

split * String[] split(String regex)
Splits this String around matches of the given regular expression.

substring String substring(int beginIndex)
Returns a new String that is a substring of this String.

substring String substring(int beginIndex, int endIndex)
Returns a new String that is a substring of this String.

toCharacter * Character toCharacter()
toDouble * Double toDouble()
toFloat * Float toFloat()
toInteger * Integer toInteger()
toLong * Long toLong()

String conversions.
toList * List toList()

Converts the given String into a List of strings of one character.
toLowerCase String toLowerCase()

Converts all of the characters in this String to lower case.
toUpperCase String toUpperCase()

Converts all of the characters in this String to upper case.
tokenize * List tokenize()

Tokenize a String with a space character as delimiter.
tokenize * List tokenize(String token)

Tokenize a String with token as delimiter.

Barclay chap03.qxd 02/01/1904 9:53 PM Page 21

A mix of examples follows (the space character is emphasized and shown as �):

‘Hello’.compareToIgnoreCase(‘hello’) // 0
’Hello’.concat(‘world’) // Hello world
’Hello’.endsWith(‘lo’) // true
’Hello’.equalsIgnoreCase(‘hello’) // true
’Hello’.indexOf(‘lo’) // 3
’Hello world’.indexOf(‘o’, 6) // 7
’Hello’.matches(‘Hello’) // true
’Hello’.matches(‘He’) // false
’Hello’.replaceAll(‘l’, ‘L’) // HeLLo
’Hello world’.split(‘l’) // ’He’, ’o wor’, ’d’
’Hello’.substring(1) // ello
’Hello’.substring(1, 4) // ell
’Hello’.toUpperCase() // HELLO
def message = ’Hello’
message.center(11) //���Hello���
message.center(3) // Hello
message.center(11, ’#’) // ###Hello###
message.eachMatch(’.’) { ch -> // print H e l l o
println ch } on separate lines

message.getAt(0) // H
message.getAt(0..<3) // Hel
message.getAt([0, 2, 4]) // Hlo
message.leftShift(’world’) // Hello world
message << ’world’ // Hello world
message.minus(’ell’) // Ho
message–’ell’ // Ho
message.padLeft(4) // Hello
message.padLeft(11) // ������Hello
message.padLeft(11, ’#’) // ######Hello
message.padRight(4) // Hello
message.padRight(11) // Hello������
message.padRight(11, ’#’) // Hello######
message.plus(’world’) // Hello world
message+’world’ // Hello world
message.replaceAll(’[a-z]’) { ch -> // HELLO
ch.toUpperCase() }

message.reverse() // olleH
message.toList() // [’H’, ’e’, ’l’, ’l’, ’o’]
def message=’Hello world’
message.tokenize() // [’Hello’, ’world’]
message.tokenize(’l’) // [’He’, ’o wor’, ’d’]

Note how the left shift operator << overloads the leftShift method. Operator
overloading was introduced in Chapter 2 and is detailed in Appendix I.4.

22 C H A P T E R 3 Strings and Regular Expressions

Barclay chap03.qxd 02/01/1904 9:53 PM Page 22

Method tokenize splits a String into a List (see Chapter 4) of Strings. The
first version of the method uses a whitespace character as separator. The second
uses the String parameter to partition it. Method split splits a string around
matches of the given regular expression (see Section 3.6 and Appendix D),
delivering an array of Strings.

3.5 string comparison

Groovy supports methods for comparing Strings. As mentioned in the previous
chapter, the operators are overloaded versions of named methods. Thus, we
compare two String objects using str1==str2, remembering that this is a
convenience for str1.equals(str2). Equally, the operator denoted as str1<=>
str2 represents str1.compareTo(str2). This method returns −1 if str1 is before
str2, +1 if str1 is after str2, and 0 if str1 and str2 are the same. This might
be used to sort a series of Strings. String comparison examples are:

‘ken’<=>‘ken’ // 0 same
’ken’<=>‘kenneth’ // −1 before
’ken’<=>‘Ken’ // 1 after
’ken’.compareTo(‘Ken’) // > 0 after

String comparisons are lexicographic; therefore uppercase letters precede low-
ercase letters in the character set. Hence, as shown by the last two examples,
‘ken’ follows ‘Ken’ since ‘K’ precedes ‘k’. Groovy adopts the Unicode (see
http://www.unicode.org/) character set and this makes Groovy programs rela-
tively easy to internationalize.

3.6 regular expressions

A regular expression is a pattern that is used to find substrings in text. We have
already seen in Table 3.2 that the String class has several methods that allow us
to perform an operation using a regular expression on that String. The matches
method returns true if the recipient String matches the given regular expres-
sion parameter. Then, for example, “abc”.matches(“abc”) returns true while
“abc”.matches(“bc”) delivers false. The method replaceAll (see preceding text)
replaces all regex matches inside the String with the replacement specified by
the closure (see Chapter 9).

Groovy supports regular expressions natively using the ~”regex” expression.
The text enclosed within the quotations represents the regular expression. We
might create a regular expression object with:

3.6 regular expressions 23

Barclay chap03.qxd 02/01/1904 9:53 PM Page 23

def regex = ~’cheese’

When the Groovy operator =~ appears as a predicate (expression returning a
boolean) in if and while statements (see Chapter 8), the String operand on the
left is matched against the regular expression operand on the right. Hence, each
of the following delivers the value true:

’cheesecake’=~’cheese’
!(’cheesecake’=~’fromage’)
’cheesecake’=~regex

The stricter operator ==~ requires an exact match. Hence, the following
expression has the value false:

’cheesecake’==~‘cheese’

In a regular expression, two special positional characters are used to denote the
beginning and end of a line: caret (∧) and dollar sign ($):

def rhyme=‘Humpty Dumpty sat on a wall’
rhyme=~‘∧Humpty’ // true
rhyme=~‘wall$’ // true

Regular expressions can also include quantifiers. The plus sign (+) represents one
or more times, applied to the preceding element of the expression. The asterisk
(*) is used to represent zero or more occurrences. The question mark (?) denotes
zero or once. The metacharacter { and } is used to match a specific number of
instances of the preceding character. The following all yield true:

’aaaaab’=~‘a*b’
’b’ =~ ‘a*b’
’aaacd’ =~ ‘a*c?d’
’aaad’ =~ ‘a*c?d’
‘aaaaab’ =~‘a{5}b’
!(‘aab’=~‘a{5}b’)

In a regular expression, the period symbol (.) can represent any character. This is
described as the wildcard character. Things get complicated, however, when we are
required to match an actual period character. All of the following are true:

rhyme=~‘.all’
‘3.14’=~‘3.14’ // pattern: 3 followed by any character followed by 14
‘3X14’=~‘3.14’
‘3.14’=~‘3\\.14’ // pattern: 3.14 literally!
!(‘3X14’=~‘3\\.14’)

24 C H A P T E R 3 Strings and Regular Expressions

Barclay chap03.qxd 02/01/1904 9:53 PM Page 24

Great care is required when using the backslash character. In a normal String, it
acts as the escape character and so “\\” represents the single backslash. A regular
expression to denote a single backslash then becomes “\\\\”. Confusingly, we
need four occurrences to denote one backslash!

A regular expression may include character classes. A set of characters can be
given as a simple sequence of characters enclosed in the metacharacters [and] as
in [aeiou]. For letter or number ranges, you can use a dash separator as in [a–z]
or [a–mA–M]. The complement of a character class is denoted by a leading caret
within the square brackets as in [∧a–z] and represents all characters other than
those specified. The value true is delivered from:

rhyme=~‘[HD]umpty’
!(rhyme=~‘[hd]umpty’)
!(rhyme=~‘[∧HD]umpty’)

Finally, we can group regular expressions to compose more complex expressions.
Groups are formed using the (and) metacharacters. Hence, “(ab)*” is the
regular expression for any number of occurrences of ab. You can also use alter-
nation (denoted by ⎪) to match a single regular expression from one of several
possible regular expressions. Therefore, “(a⎪b)*” describes any number of mixed
a or b. The following all yield true:

’ababab’==~‘(ab)*’
!(‘ababa’ ==~ ‘(ab)*’)
‘ababc’ ==~ ‘(ab)*c’
‘aaac’ ==~ ‘(a⎪b)*c’
‘bbbc’ ==~ ‘(a⎪b)*c’
’ababc’ ==~ ‘(a⎪b)*c’

Groovy also permits a pattern to use the / delimiter so that we do not have to
double all the backslash symbols. Thus, the example:

def matcher=“\$abc.”=~\\\$(.*)\\.

can also be expressed as:

def matcher=“\$abc.”=~ /\$(.*)\./

3.7 exercises

1. Evaluate the following expressions:
(a) “Hello”+“world”
(b) “12”+“34”
(c) “1”+“0”

3.7 exercises 25

Barclay chap03.qxd 02/01/1904 9:53 PM Page 25

2. Evaluate the following expressions:
(a) “Hello”.length()
(b) “”.length()

3. Suppose we have the String variable str defined as:

def str=“Hello world”

Then, evaluate the following expressions:
(a) str.indexOf(“or”)
(b) str.indexOf(“Or”)
(c) str.lastIndexOf(“o”)
(d) str.lastIndexOf(“or”)

4. Suppose we have the following definition:

def str=“Groovy, Groovy, Groovy”

Evaluate the following expressions:
(a) str.length()
(b) str.indexOf(“o”)
(c) str.lastIndexOf(“o”)
(d) str.indexOf(“o”, 5)
(e) str.lastIndexOf(“o”, 5)
(f) str.indexOf(“ov”, str.length()–10)
(g) str.lastIndexOf(“ov”, str.length()–4)
(h) str.indexOf(“o”, str.indexOf(“ro”))

5. Suppose we have the following definition:

def str=“Groovy programming”

Evaluate the following expressions:
(a) str.length()
(b) str.substring(7, 14)
(c) str.substring(1, str.length()–1)
(d) str.endsWith(“ming”)

6. Evaluate the following expressions:
(a) ‘Groovy’=~‘Groovy’
(b) ‘Groovy’=~‘oo’
(c) ‘Groovy’==~‘Groovy’
(d) ‘Groovy’==~‘oo’
(e) ‘Groovy’=~‘∧G’

(f) ‘Groovy’=~‘G$’
(g) ‘Groovy’=~‘Gro*vy’
(h) ‘Groovy’=~‘Gro{2}vy’

26 C H A P T E R 3 Strings and Regular Expressions

Barclay chap03.qxd 02/01/1904 9:53 PM Page 26

27

C H A P T E R 4
lists , maps ,
and ranges

In this chapter, we introduce the list, map, and range. All are collections of refer-
ences to other objects. The List and Map can reference objects of differing types.
The Range represents a collection of integer values. The List and Map also grow
dynamically. Each object referenced in a List is identified by an integer index.
In contrast, a Map collection is indexed by a value of any kind. Because the class
of the objects maintained by these collections is arbitrary, the elements of a List
might be a Map and the elements of a Map might be a List. In this way, we can
create data structures of arbitrary complexity. This is examined in Chapter 6 and
in subsequent chapters.

4.1 lists

The List is a structure used to store a collection of data items. In Groovy, the
List holds a sequence of object references. Object references in a List occupy
a position in the sequence and are distinguished by an integer index. A List lit-
eral is presented as a series of objects separated by commas and enclosed in
square brackets. Table 4.1 illustrates sample List literals.

To process the data in a list, we must be able to access individual elements.
Groovy Lists are indexed using the indexing operator []. List indices start at
zero, which refers to the first element. Consider the following List object iden-
tified as numbers and some sample List accessing.

def numbers=[11, 12, 13, 14] // list with four items
numbers [0] // 11
numbers [3] // 14

Barclay chap04.qxd 02/01/1904 9:53 PM Page 27

If the integer index is negative, then it refers to elements by counting from the
end. Thus,

numbers [–1] // 14
numbers [–2] // 13

This indexing can also be applied to a List literal, as in:

[11, 12, 13, 14][2] // 13

Once again, it is worth restating that the [] operator is the method getAt (see
Section 4.2) defined in the List class. Hence, in addition to referring to a list
element as numbers[3], we need to recognize that, in fact, we are invoking the
getAt method on the List object numbers with the method parameter 3, as in
numbers.getAt(3).

Additionally, we can index a List using ranges (examined later in this chap-
ter). An inclusive range of the form start..end delivers a new List object com-
prising the references to the objects from the original List starting at index
position start and ending at index position end. An exclusive range of the form
start..<end includes all elements except the final end element. Examples of
range indices are:

numbers [0..2] // [11, 12, 13]
numbers [1..<3] // [12, 13]

The List indexing operator can also be used to set new values into a List. Used
on the left side of an assignment, the element at the given position is replaced
by the value on the right of the assignment. The index can only be a single inte-
ger expression. If the replacement value on the right side of the assignment is
itself a List, then it is used as the replacement.

numbers [1]=22 // [11, 22, 13, 14]
numbers [1]=[33, 44] // [11, [33, 44], 13, 14]

28 C H A P T E R 4 Lists, Maps, and Ranges

TABLE 4.1 List literals

Example Description

[11, 12, 13, 14] A list of integer values
[‘Ken’, ‘John’, ‘Andrew’] A list of Strings
[1, 2, [3, 4], 5] A nested list
[‘Ken’, 21, 1.69] A heterogeneous list of object references
[] An empty list

Barclay chap04.qxd 02/01/1904 9:53 PM Page 28

This assignment is provided by the method putAt (see Table 4.2).
A new item can be appended on to the right end of a List using the <<

operator (the leftShift method) as in:

numbers<<15 // [11, [33, 44], 13, 14, 15]

Equally, the + operator (the plus method) is used to concatenate Lists:

numbers=[11, 12, 13, 14] // list with four items
numbers+[15, 16] // [11, 12, 13, 14, 15, 16]

The − operator (the minus method) is used to remove items from a List:

numbers=[11, 12, 13, 14] // list with four items
numbers– [13] // [11, 12, 14]

4.2 list methods

The Groovy List class supports a host of methods that make list processing
pleasing and easy. The List class removes much of the work that would other-
wise have to be programmed in an application. Table 4.2 tabulates and describes
some of the more common List methods. Note that those methods with an
asterisk are the augmented GDK methods.

4.2 list methods 29

TABLE 4.2 List methods

Name Signature/description

add boolean add(Object value)
Append the new value to the end of this List.

add void add(int index, Object value)
Inserts a new value into this List at the given index position.

addAll boolean addAll(Collection values)
Append the new values on to the end of this List.

contains boolean contains(Object value)
Returns true if this List contains the specified value.

flatten * List flatten()
Flattens this List and returns a new List.

get Object get(int index)
Returns the element at the specified position in this List.

Continued

Barclay chap04.qxd 02/01/1904 9:53 PM Page 29

30 C H A P T E R 4 Lists, Maps, and Ranges

TABLE 4.2 List methods (Continued)

Name Signature/description

getAt * Object getAt(int index)
Returns the element at the specified position in this List.

getAt * List getAt(Range range)
Return a new List that is a sublist of this List based on the given
range.

getAt * List getAt(Collection indices)
Returns a new List of the values in this List at the given indices

intersect * List intersect(Collection collection)
Returns a new List of all the elements that are common to both the
original List and the input List.

isEmpty boolean isEmpty()
Returns true if this List contains no elements.

leftShift * Collection leftShift(Object value)
Overloads the left shift operator to provide an easy way to append an
item to a List.

minus * List minus(Collection collection)
Creates a new List composed of the elements of the original without
those specified in the collection.

plus * List plus(Object value)
Creates a new List composed of the elements of the original together
with the new value.

plus * List plus(Collection collection)
Creates a new List composed of the elements of the original together
with those specified in the collection.

pop * Object pop()
Removes the last item from this List.

putAt * void putAt(int index, Object value)
Supports the subscript operator on the left of an assignment.

remove Object remove(int index)
Removes the element at the specified position in this List.

remove boolean remove(Object value)
Removes the first occurrence in this List of the specified element.

reverse * List reverse()
Create a new List that is the reverse the elements of the original
List.

size int size()
Obtains the number of elements in this List.

sort * List sort()
Returns a sorted copy of the original List.

Barclay chap04.qxd 02/01/1904 9:53 PM Page 30

4.3 maps 31

The following shows examples of these List methods and their effects.

[11, 12, 13, 14].add(15) // [11, 12, 13, 14, 15]
[11, 12, 13, 14].add(2, 15) // [11, 12, 15, 13, 14]
[11, 12, 13, 14].add([15, 16]) // [11, 12, 13, 14, 15, 16]
[11, 12, 13, 14].get(1) // 12
[11, 12, 13, 14].isEmpty() // false
[14, 13, 12, 11].size() // 4
[11, 12, [13, 14]].flatten() // [11, 12, 13, 14]
[11, 12, 13, 14].getAt(1) // 12
[11, 12, 13, 14].getAt(1..2) // [12, 13]
[11, 12, 13, 14].getAt([2, 3]) // [13, 14]
[11, 12, 13, 14].intersect([13, 14, 15]) // [13, 14]
[11, 12, 13, 14].pop() // 14
[11, 12, 13, 14].reverse() // [14, 13, 12, 11]
[14, 13, 12, 11].sort() // [11, 12, 13, 14]

Be alert to the following code:

def numbers=[11, 12, 13, 14]
numbers.remove(3)
numbers.remove(13)

The first remove call seeks to remove the item at position 3 using the method
remove(int index). The statement has the desired effect. However, in the sec-
ond call, the programmer intends to remove the value 13 using the method
remove(Object value). This fails, reporting an out-of-bounds exception, having
attempted to call the first remove method. Had the List contained, say, String
values, as in the following, then everything operates as expected. Groovy is able
to correctly identify the required calls to remove.

def names=[‘Ken’, ‘John’, ‘Sally’, ‘Jon’]
names.remove(3)
names.remove(‘Ken’)

4.3 maps

A Map (also known as an associative array, dictionary, table, and hash) is an
unordered collection of object references. The elements in a Map collection are
accessed by a key value. The keys used in a Map can be of any class. When we insert
into a Map collection, two values are required: the key and the value. Indexing the
Map with the same key can then retrieve that value. Table 4.3 shows some sample
Map literals comprising a comma-separated list of key:value pairs enclosed in
square brackets.

Barclay chap04.qxd 02/01/1904 9:53 PM Page 31

Observe that if the key in a Map literal is a variable name, then it is interpreted
as a String value. In the example:

def x=1
def y=2
def m=[x : y, y : x]

then, m is the Map:

m=[‘x’ : 2, ‘y’ : 1]

Individual elements of a Map are accessed using the subscript operator (imple-
mented by the method getAt; see Section 4.4). This time, the index value can
be any class of object and represents a key. The value returned is the value
paired with the key or the value null if no entry with that key exists. Consider
the following Map objects referenced as names and divisors, and some simple
indexing:

def names=[‘Ken’ : ‘Barclay’, ‘John’ : ‘Savage’]
def divisors=[4 : [2], 6 : [3, 2], 12 : [6, 4, 3, 2]]
names[‘Ken’] // ‘Barclay’
names.Ken // ‘Barclay’
names[‘Jessie’] // null
divisors[6] // [3, 2]

As with Lists, this indexing is provided by the getAt method (see next section).
Equally, the putAt method supports indexing on the left of an assignment, as in:

divisors[6]=[6, 3, 2, 1] // [4 : [2], 6 : [6, 3, 2, 1],
// 12 : [6, 4, 3, 2]]

We must be especially careful to recognize that the keys for Maps are objects. In
the names Map given previously, the keys are String objects. Similarly, the keys
of the divisors map are Integer objects. Hence, it is perfectly possible to have
the Map:

32 C H A P T E R 4 Lists, Maps, and Ranges

TABLE 4.3 Map literals

Example Description

[‘Ken’ : ‘Barclay’, ‘John’ : ‘Savage’] Forename/surname collection
[4 : [2], 6 : [3, 2], 12 : [6, 4, 3, 2]] Integer keys and their list of divisors
[:] Empty map

Barclay chap04.qxd 02/01/1904 9:53 PM Page 32

def careful=[1 : ‘Ken’, ‘1’ : ‘Barclay’]
careful[1] // Ken
careful[‘1’] // Barclay

The first entry has the Integer key assigned as 1, while the second entry has the
String key assigned as ‘1’. We might have arrived at this by receiving input
from the user, reading the first key as an Integer and the second key as a String.
We must be especially diligent if this was not our intention.

4.4 map methods

The Map class supports a range of methods that make map processing very easy.
The Map class removes much of the work that would otherwise have to be pro-
grammed in an application where a set of relationships need to be formed
between pairs of objects. Table 4.4 tabulates and describes some of the more
common Map methods. Again, those marked with an asterisk are courtesy of the
GDK.

4.4 map methods 33

TABLE 4.4 Map methods

Name Signature/description

containsKey boolean containsKey(Object key)
Does this Map contain this key?

get Object get(Object key)
Look up the key in this Map and return the corresponding value. If
there is no entry in this Map for the key, then return null.

get * Object get(Object key, Object defaultValue)
Look up the key in this Map and return the corresponding value. If
there is no entry in this Map for the key, then return the defaultValue.

getAt * Object getAt(Object key)
Support method for the subscript operator.

keySet Set keySet()
Obtain a Set of the keys in this Map.

put Object put(Object key, Object value)
Associates the specified value with the specified key in this Map. If
this Map previously contained a mapping for this key, the old value
is replaced by the specified value.

putAt * Object putAt(Object key, Object value)
Support method to allow Maps to operate with subscript assignment.

size int size()
Returns the number of key-value mappings in this Map.

values Collection values()
Returns a collection view of the values contained in this Map.

Barclay chap04.qxd 02/01/1904 9:53 PM Page 33

The following shows examples of these Map methods and their effects.

def mp=[‘Ken’ : 2745, ‘John’ : 2746, ‘Sally’ : 2742]
mp.put(‘Bob’, 2713) // [Bob:2713, Ken:2745, Sally:2742, John:2746]
mp.containsKey(‘Ken’) // true
mp.get(‘David’, 9999) // 9999
mp.get(‘Sally’) // 2742
mp.get(‘Billy’) // null
mp.keySet() // [David, Bob, Ken, Sally, John]
mp.size() // 4
mp[‘Ken’] // 2745

Notice how the values method returns a Collection of the values contained in
a Map. Often, we find it useful to have these as a List. This is easily achieved
with the code:

mp.values().asList()

4.5 ranges

A range is shorthand for specifying a sequence of values. A Range is denoted by the
first and last values in the sequence, and Range can be inclusive or exclusive. An
inclusive Range includes all the values from the first to the last, while an exclusive
Range includes all values except the last. Here are some examples of Range literals:

1900..1999 // twentieth century (inclusive Range)
2000..<2100 // twenty-first century (exclusive Range)
‘A’..’D’ // A, B, C, and D
10..1 // 10, 9, ..., 1
‘Z’..’X’ // Z, Y, and X

Observe how an inclusive Range is denoted by .., while an exclusive Range uses
..< between the lower and upper bounds. The range can be denoted by Strings
or by Integers. As shown, the Range can be given either in ascending order or
in descending order.

The first and last values for a Range can also be any numeric integer expres-
sion, as in:

def start=10
def finish=20
start..finish+1 // [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]

34 C H A P T E R 4 Lists, Maps, and Ranges

Barclay chap04.qxd 02/01/1904 9:53 PM Page 34

A number of methods are defined to operate with Ranges. They are tabulated in
Table 4.5.

The following show some examples of these Range methods and their effects:

def twentiethCentury=1900..1999 // Range literal
def reversedTen=10..1 // Reversed Range
twentiethCentury.size() // 100
twentiethCentury.get(0) // 1900
twentiethCentury.getFrom() // 1900
twentiethCentury.getTo() // 1999
twentiethCentury.contains(2000) // false
twentiethCentury.subList(0, 5) // 1900..1904
reversedTen[2] // 8
reversedTen.isReverse() // true

Further details on Lists, Maps, and Ranges are given in Appendix E.

4.6 exercises

1. Given the list [14, 12, 13, 11], express how we would obtain the List
with these elements in descending order.

2. Determine the effect of the expression [1, [2, [3, 4]]].flatten(), and
then state whether flatten recurses through nested Lists.

4.6 exercises 35

TABLE 4.5 Range methods

Name Signature/description

contains boolean contains(Object obj)
Returns true if this Range contains the specified element.

get Object get(int index)
Returns the element at the specified position in this Range.

getFrom Comparable getFrom()
Get the lower value of this Range.

getTo Comparable getTo()
Get the upper value of this Range.

isReverse boolean isReverse()
Is this a reversed Range, iterating backwards?

size int size()
Returns the number of elements in this Range.

subList List subList(int fromIndex, int toIndex)
Returns a view of the portion of this Range between the specified
fromIndex, inclusive, and toIndex, exclusive.

Barclay chap04.qxd 02/01/1904 9:53 PM Page 35

3. Given two Lists [11, 12, 13, 14] and [13, 14, 15], how would we
obtain the list of items from the first that are not in the second, that is,
[11, 12]?

4. A stack represents a last-in-first-out data structure, where all the opera-
tions occur at the stack top. The operations on a stack are (a) PUSH:
place a new item on the stack top; (b) POP: removes the topmost item
from the stack; and (c) TOP: deliver a copy of the topmost item.

If a List is used to implement a stack with the stack top denoted by the
final element of the List, then show how the stack operations can be real-
ized as List operations.

5. Given a Groovy List object referenced as table, describe which elements
are referenced by:
(a) table[0]

(b) table[table.size()– 1]

(c) table[table.size().intdiv(2)] where there is (i) an odd number of
items in the list and (ii) where there is an even number of items.

6. Distinguish between the effects of the following two List expressions:
(a) table.sort().reverse()

(b) table.reverse().sort()

7. Is the map names = [‘Ken’ : ‘Barclay’, ‘John’ : ‘Savage’, ‘Ken’ :
‘Chisholm’] a valid construction in Groovy? What would the value of the
expression names.Ken deliver?

8. Given the map divisors shown in Section 4.3, determine the effect of
the following expressions:
(a) divisors.containsKey(8)

(b) divisors[6].sort()

(c) divisors[6].intersect(divisors[12])

9. A software house is contracted to develop Groovy, Java, and C# projects.
Each project has one or more programmers involved, perhaps with the
same individual associated with more than one project. For example, the
following shows Ken, John, and Jon involved with the Groovy project:

def softwareHouse=[‘Groovy’ : [‘Ken’, ‘John’, ‘Jon’],
‘Java’ : [‘Ken’, ‘John’],
‘C#’ : [‘Andrew’]

]

36 C H A P T E R 4 Lists, Maps, and Ranges

Barclay chap04.qxd 02/01/1904 9:53 PM Page 36

Prepare expressions to answer the following:
(a) How many staff members involved with the Groovy project?
(b) Which staff members are involved with both the Groovy and Java

projects?
(c) Which staff members are involved with the Groovy project but not

the Java project?

10. A university has a number of departments, each of which is responsible for
one or more programs of study. For example, the following shows that the
Computing department has two programs, Computing and Information
Systems. Respectively, they have 600 and 300 enrolled students.

‘Engineering’ : [‘Civil’ : 200, ‘Mechanical’ : 100],
‘Management’ : [‘Management’ : 800]
]

Prepare expressions to answer the following:
(a) How many university departments are there?
(b) How many programs are delivered by the Computing department?
(c) How many students are enrolled in the Civil Engineering program?

def university = [‘Computing’ : [‘Computing’ : 600, ‘Information Systems’ : 300],

4.6 exercises 37

Barclay chap04.qxd 02/01/1904 9:53 PM Page 37

This page intentionally left blank

39

C H A P T E R 5
s imple input
and output

Strictly, input and output facilities are not part of the Groovy language.
Nonetheless, real programs do communicate with their environment. To pro-
duce simple text output in Groovy, we use statements of the form:

print xxx print(xxx)
println xxx println(xxx)

The methods print and println are used to display the value concerned
(denoted by xxx). The value may represent a String literal, a variable or expres-
sion, or an interpreted String. Method print outputs its value, and any further
output appears on the same output line. Method println advances to the next
output line after displaying its value.

5.1 s imple output

Example 01 demonstrates how to print a simple String literal using the print
and println methods.

print “My name is“
print(“Ken”)
println()

println “My first program”
println(“This is fun”)

EXAMPLE 01
Simple output

Barclay chap05.qxd 02/01/1904 9:54 PM Page 39

When we execute this Groovy script, the output produced is:

My name is Ken
My first program
This is fun

The first two program statements are responsible for the first line of output.
Method print displays its parameter on the console. Any further output contin-
ues on the same output line. The simple method call println() prints a line
break. Note how the value parameter may optionally be enclosed in parentheses.

◆

From Chapter 3, we know that Strings enclosed in double quotes are inter-
preted, and any ${expression} is evaluated and becomes part of the String.
Example 02 shows this at work with some print statements.

def age=25
print “My age is: “
println age
println “My age is: ${age}”

Running this script produces:

My age is: 25
My age is: 25

Note how the println age method call is used to print the value of the age variable.

◆

We can also print the contents of a List or Map. Example 03 shows how we
use the same scheme as already cited.

def numbers=[11, 12, 13, 14]
def staffTel=[‘Ken’ : 2745, ‘John’ : 2746, ‘Jessie’ : 2772]

println “Numbers: ${numbers}”
println “Staff telephones: ${staffTel}”

The output is:

Numbers: [11, 12, 13, 14]
Staff telephones: [“Jessie”:2772, “John”:2746, “Ken”:2745]

◆

40 C H A P T E R 5 Simple Input and Output

EXAMPLE 02
Output of a value

EXAMPLE 03
Printing Lists
and Maps

Barclay chap05.qxd 02/01/1904 9:54 PM Page 40

5.2 formatted output

Formatted output is achieved with the printf method call. The formal descrip-
tion of printf is:

printf(String format, List values)

This method prints its values on the console. The values are any expressions
representing what is to be printed. The presentation of these values is under
control of the formatting string. This string contains two types of information:
ordinary characters, which are simply copied to the output, and conversion speci-
fications, which control conversion and printing of the values.

Two simple illustrations of printf are shown in Example 04. In both exam-
ples, the List of values to be printed is empty. The format String comprises
ordinary characters. The first printf method call displays its format String.
Further output continues on the same output line. The second example
includes the escape character \n, representing a newline. Any output after that
will begin on the next line.

printf(‘My name is Ken’, [])
printf(‘My name is Ken\n’, [])

◆

In the next example, we include a List of values. The format String then
includes conversion specifications for each of the values. The conversion speci-
fications are introduced by the percent (%) character. In the first example, %d
denotes printing an integer value. In the second, the %f conversion is used for
printing floating point values.

def a=10
def b=15
printf(‘The sum of %d and %d is %d\n’, [a, b, a+b])

def x=1.234
def y=56.78
printf(‘%f from %f gives %f\n’, [y, x, x– y])

5.2 formatted output 41

EXAMPLE 04
Simple formatted
output

EXAMPLE 05
Conversion
specifications

Barclay chap05.qxd 02/01/1904 9:54 PM Page 41

42 C H A P T E R 5 Simple Input and Output

The output is:

The sum of 10 and 15 is 25
56.780000 from 1.234000 gives –55.546000

◆

A more detailed discussion of the conversion specifications is given in Appendix F.
Example 06 illustrates using the %s conversion to print a string. In all three
examples, the output string is enclosed in [and] to reveal the effect of the con-
versions. We see that %s simply outputs the string. The conversion %20s outputs
the string right justified in a field of 20 characters. The conversion %–20s left
justifies the output.

printf(‘[%s]\n’, [“Hello there”])
printf(‘[%20s]\n’, [“Hello there”])
printf(‘[%–20s]\n’, [“Hello there”])

The output is:

[Hello there]
[Hello there]
[Hello there]

◆

5.3 s imple input

The object in defined in the Java class System represents the standard input, and
is an object of the class InputStream. This class includes the method readLine,
which reads a single line of input as a String. Hence, the method call
System.in.readLine() can be used to obtain a line of input from the user.
Example 07 shows this in a program to read a user’s name.

print “Please enter your name: “
def name=System.in.readLine()
println “My name is: ${name}”

◆

Method readLine returns a String value. We can use the method toInteger on
that String to convert it into an integer value or toDouble to convert it to a

EXAMPLE 06
Field widths and
justification

EXAMPLE 07
Simple input

Barclay chap05.qxd 02/01/1904 9:54 PM Page 42

5.3 s imple input 43

floating point value. Example 08 shows three Groovy methods (see Chapter 7)
that might be used to read various input values.

def readString() {
return System.in.readLine()

}

def readInteger() {
return System.in.readLine().toInteger()

}

def readDouble() {
return System.in.readLine().toDouble()

}

print ‘Please enter your name: ‘
def name=readString()
println “My name is: ${name}”

print ‘Please enter your age: ‘
def age=readInteger()
println “My age is: ${age}”

Using System.in.readLine() implies that each input value is supplied as a single text
line. The methods toInteger and toDouble expect that the input String be correctly
formatted with no unexpected characters and no leading or trailing spaces.

The methods readString, readInteger, etc. will find uses in other scripts.
We collect them as a set of static methods in the class Console that can then be
imported into other applications. The class Console is found in the console
package. Further information on this class is given in Appendix F.

package console

class Console {
def static readString() { ... }
def static readLine() { ... }
def static readInteger() { ... }
def static readDouble() { ... }
def static readBoolean() { ... }

}

◆

Importantly, the methods of class Console tokenize the input so that, for exam-
ple, leading whitespace on an integer value is ignored by method readInteger.
Example 09 shows how we use these methods.

EXAMPLE 08
Miscellaneous
inputs

Barclay chap05.qxd 02/01/1904 9:54 PM Page 43

import console.*

print ‘Please enter your name: ‘
def name=Console.readString()
println “My name is: ${name}”

print ‘Please enter your age: ‘
def age=Console.readInteger()
println “My age is: ${age}”

Executing this script might result in the following (user input is italicized and
bold):

Please enter your name: Ken
My name is: Ken
Please enter your age: 25
My age is: 25

◆

Importantly, the Console class buffers and tokenizes its input so that more than
one value may be given on one input line. Example 10 demonstrates how this
is used.

import console.*

print ‘Please enter your name and age: ‘
def name=Console.readString()
def age=Console.readInteger()
println “Name: ${name}, and age: ${age}”

Running this script, we could have:

Please enter your name and age: Ken 225
Name: Ken, and age: 25

◆

44 C H A P T E R 5 Simple Input and Output

EXAMPLE 10
Buffered and
tokenized input

EXAMPLE 09
Using the
Console class

Barclay chap05.qxd 02/01/1904 9:54 PM Page 44

5.4 exercises

1. Prepare a Groovy program to produce the following two lines of output:

Programming in Groovy
is fab

using (a) two print statements and (b) one print statement.

2. Given the variable staffNumber declared and initialized as 123 and the
variable staffSalary declared and initialized as 456.78 in a Groovy script,
prepare output statements to produce the following output (note how the
numerical values are directly aligned with the text):

STAFF PAY
123 456.78

3. Write a Groovy script that reads the sum of money 123.45, increases it by
10%, and prints the new sum.

4. Develop a program that reads the total number of seconds since mid-
night, and then converts it to hours, minutes, and seconds, and presents
it as hh:mm:ss.

5. Develop a program that reads a measure for the total number of inches
and converts it to yards, feet, and inches (12 inches in 1 foot, 3 feet in
1 yard).

6. Develop a program to determine the perimeter and the area of a rectan-
gle, given input values for its length and breadth.

5.4 exercises 45

Barclay chap05.qxd 02/01/1904 9:54 PM Page 45

This page intentionally left blank

47

C H A P T E R 6
case study:
a l ibrary application
(modeling)

This chapter illustrates how Groovy’s Lists and Maps might be used in practice.
For this first case study, we construct a simple model of the loan data main-
tained by a library. For a more realistic example, see those chapters in which we
revisit the problem and construct a more elaborate implementation.

In keeping with modern practice, we develop the library application as a
series of iterations. This lets us change the implementation of the case study in
a controlled manner. The first iteration illustrates the use of a List and the
second a Map.

6.1 iteration 1 : specification
and list implementation

A library maintains a record of books on loan to its borrowers. In this very sim-
plistic solution, each book is known by its title and each borrower by his or her
name. The library’s database of books on loan can be represented in a number
of ways. However, our choice is made easier by Groovy’s support for two impor-
tant data structures: List and Map.

One solution is to use a List to represent the loans database. Recall from
Chapter 4 that the List holds a number of object references, each of which can
be accessed by an integer index. The List can also grow and shrink dynamically.
It is also important to realize that each element in the List can be any object.

Barclay chap06.qxd 02/01/1904 9:54 PM Page 47

This means that we are able to construct Lists of arbitrary complexity. In this
first solution, each element in the List that represents the library database is
itself a List of two elements, namely, the borrower’s name and the title of the
book on loan to that borrower.

Here is how we initialize the loans database:

def library = [[‘Ken’, ‘Groovy’],
[‘Ken’, ‘UML’],
[‘John’, ‘Java’]

]

This gives us a List of three elements, each of which is a List of two elements.
The first shows that the borrower Ken has the book titled Groovy out on loan,
and the second shows that he also has the book entitled UML. The third records
that John has Java out on loan.

From Chapter 4, we know that the List class supports a host of methods
that make list processing very easy. For example, we can add new loans with the
add method or the synonymous << operator:

library<<[‘John’, ‘OOD’]
library.add([‘Sally’, ‘Basic’])

We can print the List with:

println “Library: ${library}”

This gives us a visual check that the List contains the elements we expect (see
following text for the actual output).

Putting all of this together, we might have the following Groovy script to
establish the initial loan database, add two new elements, and then print the
database:

// initialize the loans database
def library=[[‘Ken’, ‘Groovy’],

[‘Ken’, ‘UML’],
[‘John’, ‘Java’]

]

// add two new loans
library<<[‘John’, ‘OOD’]
library.add([‘Sally’, ‘Basic’])

// print the loan details
println “Library: ${library}”

48 C H A P T E R 6 Case Study: A Library Application (Modeling)

EXAMPLE 01
A List
implementation

Barclay chap06.qxd 02/01/1904 9:54 PM Page 48

It produces the output:

Although it is not well formatted, it will suffice for this first case study.
To illustrate further, we can determine whether Ken has borrowed the book

titled UML with:

library.contains([‘Ken’, ‘UML’]) // true

and determine the number of books on loan to all borrowers with:

library.size()

An updated script could be:

// as for the previous script
// ...

// determine if Ken has borrowed UML
println “Ken has borrowed UML? ${library.contains([‘Ken’, ‘UML’])}”

// print the number of books on loan
println “Number of books on loan: ${library.size()}”

It produces the output:

Ken has borrowed UML? true
Number of books on loan: 5

◆

Notice that even in this simple example, we make effective use of the GDK
methods such as leftShift (the << operator) available for the List class as well
as JDK methods such as contains. This simplifies our task enormously and is a
major strength of Groovy.

Library: [[“Ken”, “Groovy”], [“Ken”, “UML”], [“John”, “Java”], [“John”, “OOD”], [“Sally”, “Basic”]]

Library: [[“Ken”, “Groovy”], [“Ken”, “UML”], [“John”, “Java”], [“John”, “OOD”], [“Sally”, “Basic”]]

6.1 iteration 1 : specification and list implementation 49

Barclay chap06.qxd 02/01/1904 9:54 PM Page 49

50 C H A P T E R 6 Case Study: A Library Application (Modeling)

6.2 iteration 2 : map
implementation

An alternative approach might be to use a Map to represent the loan database.
Recall from Chapter 4 that the Map is an unordered collection of object refer-
ences. It can grow and shrink dynamically. Each value in a Map is accessed by a
key. When we insert items into a Map, we provide a key/value pair. These pairs
are commonly known as map entries. Because the key and the value can be any
class of object, we are able to construct Maps of arbitrary complexity, as we did
with the List implementation.

For example, we can associate a List of borrowed book titles with a bor-
rower. The key is the name of the borrower, and the value is a List of book titles
on loan to that borrower. We can alternatively initialize the loan database with:

def library=[‘Ken’ : [‘Groovy’, ‘UML’],
‘John’ : [‘Java’]

]

resulting in a Map with two entries. The first has Ken as the key and an associated
value that is a List containing two elements, Groovy and UML. They are the titles
of the books on loan to Ken. Similarly, the second records that John has a single
book on loan entitled Java.

We can add a new borrower and her associated books with:

library[‘Sally’]=[‘Basic’]

However, we must be careful when updating an existing borrower’s List of book
titles since the Map does not permit duplicate keys. Any attempt to add a dupli-
cate key results in the original value being lost. Therefore, we implement mak-
ing a new loan to John as:

library[‘John’]=library[‘John’]<<‘OOD’

by creating an updated List then overwriting the original entry in the Map.
As with the List implementation, we can determine if Ken has borrowed a

particular book with:

library[‘Ken’].contains(‘UML’)

and count the number of borrowers with:

library.size()

Barclay chap06.qxd 02/01/1904 9:54 PM Page 50

6.2 interation 2 : map implementation 51

As with the List implementation, we are making use of GDK and JDK meth-
ods that already exist for the Map class. To illustrate further, we might want the
borrower names in alphabetical order and the number of books on loan to Ken.
We can easily accomplish this with:

library.keySet().sort()

and:

library[‘Ken’].size()

Putting it all together, we have the following Groovy script:

// initialize the loans database
def library=[‘Ken’ : [‘Groovy’, ‘UML’],

‘John’ : [‘Java’]
]

// add a new borrower
library[‘Sally’]=[‘Basic’]

// update an existing borrower
library[‘John’]= library[‘John’]<<‘OOD’

// display the data in various ways
println “Library: ${library}”

println “Ken has borrowed UML? ${library[‘Ken’].contains(‘UML’)}”

println “Number of borrowers in the library: ${library.size()}”

println “Library: ${library.keySet().sort()}”

println “Number of books borrowed by Ken: ${library[‘Ken’].size()}”

The script produces the following output:

Ken has borrowed UML? true
Number of borrowers in the library: 3
Library: [“John”, “Ken”, “Sally”]
Number of books borrowed by Ken: 2

◆

Library: [“Sally”:[“Basic”], “John”:[“Java”, “OOD”], “Ken”:[“Groovy”, “UML”]]

EXAMPLE 02
A Map
implementation

Barclay chap06.qxd 02/01/1904 9:54 PM Page 51

As before, it is not well formatted, but it will suffice for our purposes. The main
point is that because Groovy has native syntax for Lists and Maps, our
programming task is made much easier. We will make extensive use of this fea-
ture in the chapters that follow.

6.3 exercises

1. Using the List implementation of iteration 1, show how you might
determine how many books a particular borrower has on loan.

2. Consider a situation in which it is possible that a borrower may belong to
two different libraries. Using the List implementation of Iteration 1,
show how you might determine which borrowers belong to both.

3. Repeat the case study using the Map implementation of Iteration 2 in
which the key is the title of the book and the value is a List of the names
of borrowers (assuming, this time, that the library has multiple copies of
books).

4. Compare two Lists representing the names of staff involved in two sepa-
rate project developments. A staff member may be involved in one or
both projects. Find those staff involved in both projects. Find those
involved in only one project.

5. Prepare a Map in which the keys are the names of individuals and the val-
ues are their ages. How might we find the age of John? How do we
remove an entry from the Map? How might we determine the age of the
youngest?

52 C H A P T E R 6 Case Study: A Library Application (Modeling)

Barclay chap06.qxd 02/01/1904 9:54 PM Page 52

53

C H A P T E R 7
methods

A method is a name given to a segment of code that can be executed or called
one or more times in a program. Methods may also be given parameters that act
as input values to the method call. Each method call may use different actual
parameters that determine the effect of the method when it is executed.

Methods in Groovy partition large programs into smaller manageable units,
thus simplifying the programming task. Each method is responsible for a par-
ticular functionality required in the application. One method can call or execute
any other method. Thus, a task represented by one method can be partitioned
into subtasks realized by other submethods. Further, methods developed in one
program may be incorporated into other programs, avoiding the need to repro-
gram them.

Groovy methods as described in this chapter are synonymous with func-
tions, procedures, or subroutines found in other programming languages.

7.1 methods

A method is defined using the keyword def. The simplest form of a method def-
inition is one with no parameters as shown here:

def methodName() {
// Method code goes here

}

Method names are presented as program identifiers (see Chapter 2). If a method
takes no parameters that is signaled by (), which cannot be omitted.

Barclay chap07.qxd 02/01/1904 9:54 PM Page 53

def greetings() {
println ‘Hello and welcome’

}

greetings()

Here, the method is named greetings. The method code involves printing a
simple greeting to the user. The method is then invoked using the method call
greetings(). The program output is:

Hello and welcome

◆

This method may also be written as in Example 02.

def greetings() {
print ‘Hello’
print ‘ and ‘
println ‘welcome’

}

greetings()

◆

On this occasion, method greetings has three statements. Each is a separate
invocation of the print statement. Here, each statement is given on a separate
line. This generally improves the readability of the code and is the style used
throughout this textbook. If we want two or more statements on a line, we must
use a semicolon separator, as in:

def greetings() {
print ‘Hello’; print ‘ and ‘
println ‘welcome’

}

greetings()

◆

Consider now a method that includes some variables. The program is required
to read two integer values and print them in reverse order. To achieve this effect,
the method must have two variables as repositories for the data values.

54 C H A P T E R 7 Methods

EXAMPLE 01
Simple method
definition

EXAMPLE 02
Method with three
statements

EXAMPLE 03
Multiple
statements on a
single line

Barclay chap07.qxd 02/01/1904 9:54 PM Page 54

import console.*

def reverse() {
print ‘Enter the two integer values: ‘
def first=Console.readInteger()
def second=Console.readInteger()
println “Reversed values: ${second} and ${first}”

}

reverse() // now call it

Running the script might produce the following (with the user input shown as
bold and italic):

Enter the two integer values: 12
34
Reversed values: 34 and 12

◆

The next example is similar to the last. It reads some data, processes it, and dis-
plays the results of its computation. The processing involves some arithmetic
operations. The program reads three integer values representing a 24-hour clock
time expressed as hours, minutes, and seconds. This time is converted to its total
number of seconds.

import console.*

def processTime() {
print ‘Enter the time to be converted: ‘
def hours=Console.readInteger()
def minutes=Console.readInteger()
def seconds=Console.readInteger()
def totalSeconds=(60 * hours+minutes) *60+seconds
println “The original time of: ${hours} hours, ${minutes} minutes
and ${seconds} seconds”
println “Converts to: ${totalSeconds} seconds”

}

processTime() // now call it

Running this program might produce:

Enter the time to be converted: 1
2
3
The original time of: 1 hours, 2 minutes and 3 seconds
Converts to: 3723 seconds

7.1 methods 55

EXAMPLE 05
Converting a clock
time

EXAMPLE 04
Method variables

Barclay chap07.qxd 02/01/1904 9:54 PM Page 55

7.2 method parameters

A method is more generally useful if its behavior is determined by the value of
one or more parameters. We can transfer values to the called method using
method parameters. A method with three parameters appears as:

def methodName(para1, para2, para3) {
// Method code goes here

}

The method parameters appear as a list of formal parameter names enclosed in
parentheses following the method name. The parameter names must differ from
each other.

To illustrate, let us revisit our method greetings. The first version simply
printed a fixed message. We can personalize its behavior if we provide a param-
eter representing the name of the person we wish to welcome. Here is the new
version.

def greetings(name) {
println “Hello and welcome, ${name}”

}

greetings(‘John’)

Running the program produces the output:

Hello and welcome, John

◆

The actual parameter ‘John’ initializes the formal parameter name, which the
method then prints.

7.3 default parameters

The formal parameters in a method definition can specify default values. Where
default values are given, these values are used if the caller does not pass them
explicitly. Default parameter values are shown as assignments. Where default
parameters are introduced in a method definition, then they may only occur
after nondefault parameters. That is, default parameters may only be used for
parameters at the end of the formal parameter list. Default and nondefault
parameters may not be intermixed. For example, in the method:

56 C H A P T E R 7 Methods

EXAMPLE 06
Method parameters

Barclay chap07.qxd 02/01/1904 9:54 PM Page 56

def someMethod(para1, para2=0, para3=0) {
// Method code goes here

}

the second and third parameters have been given default values.
The someMethod may then be called with one, two, or three actual parame-

ters. If only one actual parameter is supplied, the other two default to zero. If
two actual parameters are used, the final parameter is zero. The method call
must include at least one actual parameter and at most three actual parameters.
An illustration of default parameters is shown in Example 07.

def greetings(salutation, name=‘Ken’) {
println “${salutation} ${name}”

}
greetings(‘Hello’, ‘John’) // Hello John
greetings(‘Welcome’) // Welcome Ken

When we execute this script, we see that the second call to method greetings
assumes that the name parameter has the default value ‘Ken’:

Hello John
Welcome Ken

◆

7.4 method return values

A method can also return a value to its caller. This is achieved with the return
statement of the form:

return expression

The statement indicates that control is to return immediately from the method
to the caller, and that the value of the expression is to be made available to the
caller. This value may be captured with an appropriate assignment.

The return statement is illustrated in Example 08. The method
hmsToSeconds obtains a clock time through its parameters, and converts it into
seconds. On this occasion, the method then returns the computed value to the
caller. The calling code calls this method and prints the returned value.

7.4 method return values 57

EXAMPLE 07
Default parameters

Barclay chap07.qxd 02/01/1904 9:54 PM Page 57

import console.*

def hmsToSeconds(h, m, s) {
return (60* h+m) *60+s

}
// Get the input from the user.

print ‘Enter hours to convert: ‘
def hours=Console.readInteger()
print ‘Enter minutes to convert: ‘
def minutes=Console.readInteger()
print ‘Enter seconds to convert: ‘
def seconds=Console.readInteger()

// Now call the method.
def total=hmsToSeconds(hours, minutes, seconds)
println “Total number of seconds=${total}”

A session running this program could produce:

Enter hours to convert: 1
Enter minutes to convert: 2
Enter seconds to convert: 3
Total number of seconds=3723

◆

Finally, we note that the return keyword is optional. If it is omitted, then the
value of the final statement is the value returned. Example 09 repeats the previ-
ous example, with method hmsToSeconds revised.

import console.*

def hmsToSeconds(h, m, s) {
def totalSeconds=(60*h+m) *60+s
totalSeconds

}

// Get the input from the user.
print ‘Enter hours to convert: ‘
def hours=Console.readInteger()
print ‘Enter minutes to convert: ‘
def minutes=Console.readInteger()
print ‘Enter seconds to convert: ‘
def seconds=Console.readInteger()

58 C H A P T E R 7 Methods

EXAMPLE 09
Implicit returns

EXAMPLE 08
Method return
values

Barclay chap07.qxd 02/01/1904 9:54 PM Page 58

// Now call the method.
def total=hmsToSeconds(hours, minutes, seconds)
println “Total number of seconds=${total}”

◆

7.5 parameter passing

Method parameters in Groovy use a parameter passing strategy known as pass by
value. This means that the value of the actual parameter is used to initialize the
value of the formal parameter. For example, in the previous program the actual
parameter hours is used to initialize the formal parameter h in the call to the
method hmsToSeconds. A similar arrangement applies to the other two formal
parameters.

In Chapter 2 (Section 2.6), we discussed how variables are object references.
The variable refers to that part of memory occupied by the object. Figures 2.1
through 2.4 illustrated these concepts. This means that when a method formal
parameter is initialized with its corresponding actual parameter, it is actually
aliased with it. Figure 2.2 describes this effect. Hence, in Example 09, at the
point of call of the hmsToSeconds method, the formal parameter h is an alias for
the actual parameter hours.

An implication of this arrangement is that any assignment to a formal
parameter within a method body establishes a new object for the formal param-
eter to refer. Consequently, the corresponding actual parameter is unaffected by
this. We demonstrate this in Example 10.

def printName(name) {
println “Name (at entry): ${name}”
name=‘John’
println “Name (after assignment): ${name}”

}

def tutor=‘Ken’
printName(tutor)

println “Tutor: ${tutor}”

When we run this program, the output produced is:

Name (at entry): Ken
Name (after assignment): John
Tutor: Ken

◆

7.5 parameter passing 59

EXAMPLE 10
Parameter aliasing

Barclay chap07.qxd 02/01/1904 9:54 PM Page 59

The method printName is defined in terms of a formal parameter name. First, the
method prints this value at its point of entry into the method. It then assigns a
new String object to this formal parameter variable. Following the consequence
of Figure 2.2, the name parameter now references a new String object with the
value ’John’. The final print statement in the method reveals that it does
indeed have this new value. In the code, the printName method is called with
the object (‘Ken’) referenced by the variable tutor as the actual value. Because
this is also referenced by the name parameter at the point of entry to the method,
then this is why Ken is the first line printed. After return from the printName
method, the program finishes by printing the value of tutor. We see that this is
unaffected by the change to the formal parameter.

A consequence of this aliasing of formal and actual parameters is that the
swap method, as defined in Example 11, does not produce the effect that we
might expect. The definition for method swap suggests that the parameters x
and y have their values interchanged. This occurs during the execution of the
method but, as has been explained, these changes are not reflected in the corre-
sponding actual parameters. The execution of this program reveals what
happens.

Enter the first value: 12
Enter the second value: 34
First: 12
Second: 34

import console.*

def swap(x, y) {
def temp=x
x=y
y=temp

}

print ‘Enter the first value: ‘
def first=Console.readInteger()
print ‘Enter the second value: ‘
def second=Console.readInteger()

// Now call the swap method
swap(first, second)
println “First: ${first}”
println “Second: ${second}”

◆

60 C H A P T E R 7 Methods

EXAMPLE 11
Interchange method

Barclay chap07.qxd 02/01/1904 9:54 PM Page 60

7.6 scope

The method processTime in Example 05 has four variables: hours, minutes,
seconds, and totalSeconds. These are referred to as local variables since they are
introduced in this method. Local variables have the method body in which they
are defined as their scope. This means that they can only be referenced in their
scope and have no existence outside of this scope. Hence, elsewhere in the code,
these variables have no meaning.

Earlier, we noted that method parameters appear as a list of formal
parameter names enclosed in parentheses following the method name. The
parameter names must differ from each other and they too represent names
that are local to the method. When the method is called, these formal param-
eters are initialized with the values of the corresponding actual parameters.
The formal parameters also behave as local variables with the method body
as their scope.

This same mechanism is used for variables defined outside of a method,
such as the variables first and second used in Example 11. Appendix B describes
how a Groovy script is compiled into a Java class with a run method. Groovy
variables defined outside a method using def are effectively local to the gener-
ated run method and cannot be referenced by any of our Groovy methods (see
Example 12).

Example 12 includes the method printName and the defined variable tutor.
From the preceding paragraph, we know that the variable tutor is local to the
generated run method and cannot, therefore, be referenced in the method
printName (see commented line in the method body).

def printName(name) {
println “Name (at entry): ${name}”
//name=tutor
name=‘Ken’
println “Name (after assignment): ${name}”

}

def tutor=‘Ken’

printName(‘John’)

//println “Name: ${name}” // ERROR: No such property

When we run this program, we have the output:

Name (at entry): John
Name (after assignment): Ken

◆

7.6 scope 61

EXAMPLE 12
Variable scope

Barclay chap07.qxd 02/01/1904 9:54 PM Page 61

The two lines of output show that the formal parameter name is first initialized
with the actual parameter value ‘John’. Then it is changed by assignment to the
String literal ‘Ken’.

Note also the commented line at the end of the listing. The parameter name,
like any variables defined within the body of the printName method, has the
method body as its scope. Hence, these variables can only be referenced within
the method. Any attempt to reference the name variable elsewhere in the code
will produce an error as shown.

This scoping rule comes up again in Example 13. At the point at which
a variable is defined is irrelevant, they still cannot be referenced in the body of a
method.

def tutor=‘Ken’

def printName(name) {
println “Name: ${name}”
//println “Tutor: ${tutor}”

}

printName(‘John’)

The program output is, as we would expect, with the tutor variable inaccessi-
ble to the method printName (see commented line in the method body).

Name: John

◆

7.7 collections as method
parameters and return values

A Groovy method can accept a collection parameter, such as a List, and return
a collection value. In Example 14, the method sort is used to order a List of
values. If the second parameter is the Boolean value true, then the List is sorted
into ascending order. If the Boolean value is false, then the List is ordered in
descending order.

def sort(list, ascending=true) {
list.sort()
if(ascending==false)

list=list.reverse()
return list

}

62 C H A P T E R 7 Methods

EXAMPLE 13
Variables and
methods in same
scope

EXAMPLE 14
List parameter
and return

Barclay chap07.qxd 02/01/1904 9:54 PM Page 62

def numbers=[10, 5, 3, 6]

assert(sort(numbers, false)==[10, 6, 5, 3])

◆

Here, rather than display the result, we have shown the assert keyword by
which we make an assertion about the value returned from the sort method.
Since the method does indeed produce the list [10, 6, 5, 3], the assertion is
true and the program produces no output. Had the assertion been false, then an
AssertionError would be raised and reported. A detailed discussion of asser-
tions is given in Chapter 15.

Further aspects of methods, such as recursive methods and statically typed
method parameters and return values, are examined in Appendix G.

7.8 exercises

The reader should consult the supporting Appendix G before completing these
exercises.

1. Prepare and test a method entitled square that returns the square of its
single parameter.

2. Pre-decimal coinage in Great Britain had 12 pence in a shilling and 20
shillings in a pound. Write methods to add and subtract two of these
monetary amounts. Both methods will require six parameters. The first
three represent the first monetary amount and the remaining three the
other amount. Each method should return the value expressed as pence.

3. Write and test a method to determine whether a given time of day is
before another. Each time is represented by a triple of the form 11, 59,
AM, or 1, 15, PM.

4. The values 1, 2, 4, 8, 16, ... are powers of the value 2. First, develop a
method isEven that determines whether its single integer parameter is an
even value. Then, using isEven, develop a recursive method isPowerOfTwo
that determines if its single parameter is a power of 2.

5. Using (only) the methods head and tail (see Appendix G, Example 02),
develop a method length that determines the number of elements in a list
given as its parameter.

6. Using (only) the methods head, tail, and cons, develop a method
reverse that reverses the elements of a List given as its parameter.

7.8 exercises 63

Barclay chap07.qxd 02/01/1904 9:54 PM Page 63

7. Prepare a recursive version of the length method given in Exercise 6.

8. Prepare a recursive method maxList that finds the greatest value in a List
of integers.

9. Consider the lists [50, 20, 10, 5, 2, 1] and [25, 10, 5, 1] that rep-
resent, respectively, the coins in circulation in the United Kingdom and
the United States. Develop methods changeUK and changeUS that, when
given a monetary amount (of value 1 to 99 inclusive), deliver a List of
the coins from the currency to equal this amount.

10. Develop a method (similar to the preceding exercise) entitled intToRoman
that expresses an integer as Roman numerals. The integer value is given as
the method parameter. The Roman value is returned as a List of Strings.
As a simplification, the value 1984 can be expressed as MDCCC-
CLXXXIIII.

11. A list of items, each comprising a list of pairs, can be used to represent a
directed graph. The list graph = [[‘a’, ‘b’], [‘a’, ‘c’], [‘a’, ‘d’],
[‘b’, ‘e’], [‘c’, ‘f’], [‘d’, ‘e’], [‘e’, ‘f’], [‘e’, ‘g’]] repre-
sents a graph in which node a connects to b, c, and d, node b connects to
e, etc. Develop the method successors(node, graph), which returns a list
of the successor nodes from node in graph.

12. Many graph algorithms work by following edges, keeping track of nodes
visited so that one is not visited more than once. In a depth-first search,
the subgraph reachable from the current node is fully explored before
other nodes are visited. Develop the method depthFirst(node, graph) to
return the list representing the depth-first search from node in graph.

13. Develop a method entitled explode that transforms a string into a List of
Strings of size one. The method signature is:

def explode(str) { ... }

Now, develop the complementary method implode, which accepts a list of
Strings and concatenates them into a single String:

def implode(strList) { ... }

Using these two methods, develop the method reverseString for reversing
the characters of a String parameter:

def reverseString(str) { ... }

64 C H A P T E R 7 Methods

Barclay chap07.qxd 02/01/1904 9:54 PM Page 64

Finally, develop the method isPalindrome to return the boolean true if the
single String parameter is palindromic, that is, reads the same forward and
backward:

def isPalindrome(str) { .. }

14. Using the methods explode and implode from Exercise 13, develop a
method remove that removes all occurrences of a given character from a
string:

def remove(ch, str) { ... }

15. The greatest common divisor of two integers can be determined from
Euclid’s algorithm. It is defined recursively as:

gcd(n, m)=n if n==m
gcd(n, m)=gcd(n, m–n) if n<m
gcd(n, m)=gcd(n–m, m) otherwise

Implement a method to realize this and show that gcd(18, 27) is 9.

16. The Ackermann function is defined recursively as:

ackermann(n, m)=1+m if n==0
ackermann(n, m)=ackermann(n–1, 1) if m==0
ackermann(n, m)=ackermann(n–1, ackermann(n, m–1)) otherwise

Implement a method for this and show that ackermann(3, 3) is 61.

17. Implement the Quicksort algorithm to sort a List of values. Perform a
Google search for its implementation.

7.8 exercises 65

Barclay chap07.qxd 02/01/1904 9:54 PM Page 65

This page intentionally left blank

67

C H A P T E R 8
flow of
control

The execution of a program statement causes an action to be performed. The
programs we have developed execute one statement after another in a sequen-
tial manner. Because of this execution ordering of the statements, we describe
the program logic as sequential. We can also create abstract actions with method
definitions and then treat them as if they, likewise, were simple statements
through their method calls. The statements we have explored include the
assignment, input/output, and method calls.

Additionally, statements are provided in Groovy to alter the flow of control
in a program’s logic. They are then classified into one of three program flow of
control structures:

● sequence

● selection

● iteration

8.1 while statement

The fundamental iteration clause is the while statement. The syntax of the while
statement is:

while(condition) {
statement #1
statement #2
...

}

Barclay chap08.qxd 02/01/1904 9:54 PM Page 67

The while statement is executed by first evaluating the condition expression (a
Boolean value), and if the result is true, then the statements are executed. The
entire process is repeated, starting once again with reevaluation of the condition.
This loop continues until the condition evaluates to false. When the condition
is false, the loop terminates. The program logic then continues with the state-
ment immediately following the while statement. The group of statements is
known as a compound statement or block.

Where only one statement is to be controlled by a while loop, the single
statement may be presented as:

while(condition)
statement

The program shown as Example 01 prints the values from 1 to 10 inclusive.
Each iteration through the loop prints the current value of the variable count,
and then increments it. The count is first set to the start value 1. The condition
in the while statement specifies that the loop continues provided the count does
not exceed the value of LIMIT.

// Set limit and counter
def LIMIT=10
def count=1

println ‘Start’

while(count<=LIMIT) {
println “count: ${count}”
count++

}

println ’Done’

The program’s output is:

Start
count: 1
count: 2
count: 3
count: 4
count: 5
count: 6
count: 7
count: 8
count: 9
count: 10
Done

◆

68 C H A P T E R 8 Flow of Control

EXAMPLE 01
while statement

Barclay chap08.qxd 02/01/1904 9:54 PM Page 68

Conventionally, we denote variables with fixed values by capitalization. They are
generally known as symbolic constants. The value in defining such variables is that
they document a given value with their name. Further, the definition occurs only
once in the code, and only a single change is required to modify that value.

A typical use for a while statement is to loop over a series of statements an
indeterminate number of times. A statement in the loop usually affects the con-
dition that controls the looping. Example 02 demonstrates a program that reads
an unknown number of positive integers, forming a running total for their val-
ues. The user enters any negative number to end the input loop.

import console.*

// Running total
def sum=0

print ‘Enter first value: ‘
def data=Console.readInteger()
while(data>=0) {
sum+=data
print ‘Enter next value: ‘
data=Console.readInteger()

}

println “The sum is: ${sum}”

A sample session with this program is:

Enter first value: 1
Enter next value: 2
Enter next value: 3
Enter next value: 4
Enter next value: –1
The sum is: 10

◆

Note that in this example, if the first input value is negative, then the loop will
never be obeyed and the program will finish with a zero sum. Because of this,
a while statement is often described as causing the statement(s) under its con-
trol to be obeyed zero or more times.

8.2 for statement

The for statement in Groovy can be used to iterate over a Range, a collection
(List, Map, or array; see Chapter 4 and Appendix E) or a String.

8.2 for statement 69

EXAMPLE 02
Sum of a series of
positive integers

Barclay chap08.qxd 02/01/1904 9:54 PM Page 69

Example 03 repeats the first example in this chapter. Using a for statement
is a more appropriate looping construct to use when the number of times to
repeat the logic is known.

def LIMIT=10

println ‘Start’

for(count in 1..LIMIT)
println “count: ${count}”

println ‘Done’

◆

The next example demonstrates a for statement applied to a List.

// List
println ‘Start’

for(count in [11, 12, 13, 14])
println “count: ${count}”

println ‘Done’

The output from this program is:

Start
count: 11
count: 12
count: 13
count: 14
Done#

◆

We can also iterate through the elements of a Map. In Example 05, the total age
of the employees is recorded in a Map. It is worth noting that the loop variable

70 C H A P T E R 8 Flow of Control

EXAMPLE 03
for statement

EXAMPLE 04
Looping through a
List

for(variable in range) { for(variable in collection) { for(variable in string) {
statement #1 statement #1 statement #1
statement #2 statement #2 statement #2
...

} } }

Barclay chap08.qxd 02/01/1904 9:54 PM Page 70

staffEntry. Since we are looping through all the entries in a Map, then every
item is a Map.Entry (see JDK documentation) object that references both the
key and value. Hence, in the loop, we refer to the staff member’s age with
staffEntry.value.

// Staff name and age
def staff=[‘Ken’ : 21, ‘John’ : 25, ‘Sally’ : 22]

def totalAge=0
for(staffEntry in staff)

totalAge+=staffEntry.value

println “Total staff age: ${totalAge}”

The output produced is:

Total staff age: 68

◆

Finally, we show how we can also iterate through the characters that compose a
String. In Example 06, name is processed character by character and inserted
into a List.

def name=‘Kenneth’
def listOfCharacters=[]

for(letter in name)
listOfCharacters<<letter

println “listOfCharacters: ${listOfCharacters}”

The output is:

listOfCharacters: [“K”, “e”, “n”, “n”, “e”, “t”, “h”]

◆

8.3 if statement

The general form of the if statement is:

if(condition) {
statement #1a
statement #1b
...

} else {

8.3 if statement 71

EXAMPLE 05
Looping through a
Map

EXAMPLE 06
Looping through a
String

Barclay chap08.qxd 02/01/1904 9:54 PM Page 71

statement #2a
statement #2b
...

}

where if and else are reserved words. If the condition evaluates to the Boolean
value true, then the compound statement starting with statement #1a is exe-
cuted and control is then passed to the statement following the if statement. If
the value of the condition is false, then the compound statement starting with
statement #2a is executed and again control continues with the statement after
the if statement. As earlier, a single statement may replace either of the com-
pound statements.

An if statement offers a means of selecting one of two distinct logical paths
through a program. Sometimes, we wish to select whether to execute some pro-
gram code. We achieve this through a shortened version of the if statement:

if(condition) {
statement #1
statement #2
...

}

If the condition evaluates to true, then the compound statement is executed
and the program continues with the statement following the if statement. If the
condition evaluates to false, then the compound statement is ignored and the
program continues with the next statement. As before, a single statement may
replace the compound statement.

In Example 07, the program reads two integers and prints them in ascend-
ing order. This is achieved by using an if-else statement to select the correct
print statement:

import console.*

print ‘Enter first value: ‘
def first=Console.readInteger()
print ‘Enter second value: ‘
def second=Console.readInteger()

if(first<second)
println “${first} and ${second}”

else
println “${second} and ${first}”

72 C H A P T E R 8 Flow of Control

EXAMPLE 07
A simple if
statement

Barclay chap08.qxd 02/01/1904 9:54 PM Page 72

An interactive session with this program might produce:

Enter first value: 34
Enter second value: 12
12 and 34

◆

Example 08 repeats this exercise. This time, the program employs the shortened
version of the if statement. If the condition determines that the first value is
greater than the second, then the values are interchanged.

import console.*

print ‘Enter first value: ‘
def first=Console.readInteger()
print ‘Enter second value: ‘
def second=Console.readInteger()

// Exchange the order
if(first>second) {

def temp=first
first=second
second=temp

}

println “${first} and ${second}”

An execution of this program produces:

Enter first value: 34
Enter second value: 12
12 and 34

◆

Various combinations of if statements are allowed. For example, the statement
associated with the else clause may be another if statement. This can be
repeated any number of times. Such a construct is used to select from among a
number of logical paths through the code. To illustrate this, consider a program
fragment to read an examination score (any value from 0 to 100, inclusive) and
assign a letter grade. The grading scheme that applies is shown by:

8.3 if statement 73

EXAMPLE 08
Interchange two
values

Barclay chap08.qxd 02/01/1904 9:54 PM Page 73

74 C H A P T E R 8 Flow of Control

Score Grade

70–100 A
60–69 B
50–59 C
40–49 D
0–39 E

A chain of if–else statements can then describe the necessary processing:

if(score>=70)
grade=‘A’

else if(score>=60)
grade=‘B’

else if(score>=50)
grade=‘C’

else if(score>=40)
grade=‘D’

else
grade=‘E’

8.4 switch statement

The if–else statement chain in the last section occurs so frequently that a spe-
cial statement exists for this purpose. This is called the switch statement and its
form is:

switch(expression) {
case expression #1:
statement #1a
statement #1b
...

case expression #2:
statement #2a
statement #2b
...

...
case expression #N:
statement #Na
statement #Nb
...

default:
statement #Da
statement #Db
...

}

Barclay chap08.qxd 02/01/1904 9:54 PM Page 74

where switch, case, and default are Groovy keywords. The default clause and
its statements are optional. The control expression enclosed in parentheses is
evaluated. This value is then compared, in turn, against each of the case expres-
sions. If a match is made against one of the case expressions, then all statements
from that case clause through to the end of the switch are executed. If no match
is made, then the default statements are obeyed if a default clause is present.
Example 09 illustrates the basic behavior of a switch statement.

def n=2
switch(n) {

case 1: println ‘One’
case 2: println ‘Two’
case 3: println ‘Three’
case 4: println ‘Four’
default: println ‘Default’

}
println ‘End of switch’

The control expression is simply the value of the variable n. When evaluated, it
is compared, in turn, to the value of the case expressions. A match is found at
case 2 and the output from the code is:

Two
Three
Four
Default
End of switch

◆

Normally, the statements of a case label are intended to be mutually exclusive.
Having selected the matching case expression, we normally wish for only the
corresponding statements to be obeyed, and then control passed to the state-
ment following the switch statement. We achieve this with a break statement
that, in the context of a switch statement, immediately terminates it and con-
tinues with the statement after the switch. Example 10 illustrates.

def n=2
switch(n) {
case 1:
println ‘One’
break

case 2:
println ‘Two’
break

8.4 switch statement 75

EXAMPLE 09
Basic switch
behavior

EXAMPLE 10
switch and
break statement

Barclay chap08.qxd 02/01/1904 9:54 PM Page 75

case 3:
println ‘Three’
break

case 4:
println ‘Four’
break

default:
println ‘Default’
break

}
println ‘End of switch’

Running this program produces:

Two
End of switch

◆

A switch statement can be used as a replacement for the chain of if statements
shown at the end of the previous section. The code in Example 11 shows a
switch statement based on the value of the examination score. Each case clause
matches against a range representing the grade. This time no default has been
used.

import console.*

print ‘Enter examination score: ‘
def score=Console.readInteger()
def grade

switch(score) {
case 70..100:
grade=‘A’
break

case 60..69:
grade=‘B’
break

case 50..59:
grade=‘C’
break

case 40..49:
grade=‘D’
break

76 C H A P T E R 8 Flow of Control

EXAMPLE 11
switch and a
range

Barclay chap08.qxd 02/01/1904 9:54 PM Page 76

case 0..39:
grade=‘E’
break

}

println “Score: ${score}; grade: ${grade}”

Running this program produces:

Enter examination score: 50
Score: 50; grade: C

◆

The case expressions have been shown as an integer literal or a Range of inte-
ger values. In fact, the case expression might be a String, List, regular
expression, or object of some class (see Chapter 12). Example 12 shows a
switch statement in which the case expressions are Lists. A match is found
if the value of the control expression is a member of the collection.

def number=32

switch(number) {
case [21, 22, 23, 24] :
println ‘number is a twenty something’
break

case [31, 32, 33, 34] :
println ‘number is a thirty something’
break

default :
println ‘number type is unknown’
break

}

The output is:

number is a thirty something

◆

In Example 13, we show a switch statement in which the case expressions are
regular expressions. Again, a match is made against the given patterns.

8.4 switch statement 77

EXAMPLE 12
List case
expressions

Barclay chap08.qxd 02/01/1904 9:54 PM Page 77

def number=‘1234’

switch(number) {
case ~’[0-9]{3}-[0-9]{4}’ :
println ‘number is a telephone number’
break

case ~’[0-9]{4}’ :
println ‘number is a 4-digit sequence’
break

default :
println ‘number type is unknown’
break

}

The output is:

number is a 4-digit sequence

◆

8.5 break statement

The break statement is used to alter the flow of control inside loops and switch
statements. We have already seen the break statement in action in conjunction
with the switch statement. The break statement can also be used with while and
for statements. Executing a break statement with any of these looping con-
structs causes immediate termination of the innermost enclosing loop.

Example 14 illustrates this idea. The program forms the sum of at most 100
positive integer values. The user provides the values as input. If, at any point,
a negative value is entered, then the for loop immediately terminates and the
value of the summation is printed.

import console.*

def MAX=100
def sum=0

for(k in 1..MAX) {
print ‘Enter next value: ‘
def value=Console.readInteger()
if(value<0)

break

78 C H A P T E R 8 Flow of Control

EXAMPLE 14
for loop and
break statement

EXAMPLE 13
Regular
expressions for
case labels

Barclay chap08.qxd 02/01/1904 9:54 PM Page 78

sum+=value
}
println “sum: ${sum}”

Running the program produces:

Enter next value: 11
Enter next value: 12
Enter next value: 13
Enter next value: 14
Enter next value: –1
sum: 50

◆

8.6 continue statement

The continue statement complements the break statement. Its use is restricted to
while and for loops. When a continue statement is executed, control is imme-
diately passed to the test condition of the nearest enclosing loop to determine
whether the loop should continue. All subsequent statements in the body of the
loop are ignored for that particular loop iteration.

In Example 15, the program finds the sum of 10 integers input by the user.
If any negative value is entered, it is not included as part of the sum. It does,
however, count as an input value.

import console.*

def MAX=10
def sum=0

for(k in 1..MAX) {
print ‘Enter next value: ‘
def value=Console.readInteger()
if(value<0)

continue
sum+=value

}

println “sum: ${sum}”

An execution of the program is:

8.6 continue statement 79

EXAMPLE 15
for loop and
continue
statement

Barclay chap08.qxd 02/01/1904 9:54 PM Page 79

Enter next value: 1
Enter next value: 2
Enter next value: 3
Enter next value: 4
Enter next value: –5
Enter next value: –6
Enter next value: –7
Enter next value: 8
Enter next value: 9
Enter next value: 10
sum: 37

◆

8.7 exercises

1. Write a method entitled quotient that finds the quotient of two positive
integers using only the operations of additions and subtraction.

2. Write a program that reads a single positive integer data value and dis-
plays each individual digit from that value as a word. For example, the
input value 932 should display:

932: nine three two

3. Write a program that accepts a (24-hour) clock time expressed in hours,
minutes, and seconds, and verbalizes the time as suggested by the follow-
ing values:

09:10:00 ten past nine
10:45:00 quarter to eleven
11:15:00 quarter past eleven
17:30:00 half past five
19:50:00 ten to eight
06:12:29 just after ten past six
06:12:30 just before quarter past six
00:17:29 just after quarter past midnight

4. The Fibonacci sequence is defined by the following rule: The first two values
in the sequence are both 1. Every subsequent value is the sum of the two
preceding values. If fib(n) denotes the nth value in the sequence, then:

fib(1)=1
fib(2)=1
fib(n)=fib(n–1)+fib(n–2)

80 C H A P T E R 8 Flow of Control

Barclay chap08.qxd 02/01/1904 9:54 PM Page 80

Develop a method that implements fib(n), then exercise it by printing a
table for the first 10 values from this sequence.

5. Rewrite the factorial method given in Appendix G, this time using a sim-
ple loop.

6. Given a Map that represents the staff and their telephone numbers, such as:

def staff=[‘Ken’ : 2745, ‘John’ : 2746, ‘Sally’ : 2742]

develop a program to produce an alphabetical List of the staff with their
telephone numbers.

7. To calculate the day of the week for a given date, Zeller’s congruence can
be used. The algorithm computes for any valid date an integer in the
range of 0 to 6 inclusive, with 0 representing Sunday, 1 representing
Monday, etc. The formula is:

26m–2 D C
Z = + k + D + + – 2C + 77 mod 7

10 4 4

In the formula:
D = the year in the century
C = the century
k = the day of the month
m = month number, with January and February taken as months

11 and 12 of the preceding year, and March is month 1, April is
2, ..., and December is 10.

Thus, for the date 16/11/2005, D = 5, C = 20, k = 16, and m = 9.
Develop a program to read a date in the form DD/MM/YYYY and ver-

balize it. For example, the date 16/11/2005 is to produce the output
Wednesday, 16 November 2005.

8. A playing card is represented by shorthand such as QS for the queen of
spades, 10S for the ten of spades. The rank is A, 2...10, J, Q, or K. The
suit is D, C, H, or S. Develop a program to read the shorthand, such as
QS, and produce the longhand queen of spades.

9. Exercise 10 in Chapter 7 developed a method intToRoman which con-
verted an Arabic value to its Roman equivalent. Develop its counterpart
romanToInt.

8.7 exercises 81

Barclay chap08.qxd 02/01/1904 9:54 PM Page 81

10. Use the intToRoman and romanToInt methods to develop methods
addRoman and subtractRoman. Both new methods receive two String
parameters representing Roman values and return a String representing
the result (also Roman). Develop an application to receive input such as
VIIII + II.

11. Easter Sunday is the Sunday on or after March 21st. It is determined by
the formula (integer arithmetic):

c = year / 100
n = year − 19 * (year / 19)
k = (c − 17) / 25
i = c − c / 4 − (c − k) / 3 + 19 * n + 15
i = i − 30 * (i / 30)
i = i − (i / 28) * (1 − i / 28) * (29 / (i + 1)) * ((21 − n) / 11)
j = year + year / 4 + i + 2 − c + c / 4
j = j − 7 * (j / 7)
l = i − j
m = 3 + (l + 40) / 44
d = l + 28 − 31 * m / 4

If the value for d exceeds 20, then Easter occurs in March; otherwise, it is
in April.

12. The Julian date value is the number of days that have elapsed since some
distant epoch date. For example, if today were Julian value 1000000, then
tomorrow would be Julian value 1000001. A method to calculate the
Julian value for a date is:

def julian(day, month, year) {
def mm=month
def yy=year

if(mm>2)
mm–=3

else {
mm+=9
yy––

}

def cent=yy.intdiv(100)
def yr=yy % 100

return ((146097*cent).intdiv(4))+((1461 *yr).intdiv(4))
+(153 *mm+2).intdiv(5)+day+1721119

}

82 C H A P T E R 8 Flow of Control

Barclay chap08.qxd 02/01/1904 9:54 PM Page 82

Develop a program to read a date in the form MM/YYYY and produce a
calendar for that month. For example, the input value 11/2005 would
produce:

November 2005

8.7 exercises 83

S M T W T F S

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30

13. The Groovy language does not currently support the do statement as
found in Java. Develop the Groovy program code that would realize a do
statement.

Barclay chap08.qxd 02/01/1904 9:54 PM Page 83

This page intentionally left blank

85

C H A P T E R 9
closures

Groovy closures are a powerful way of representing blocks of executable code.
Since closures are objects, they can be passed around as method parameters, for
example. Because closures are code blocks, they can also be executed when
required. Like methods, closures can be defined in terms of one or more param-
eters. A significant characteristic of closures is that they can access state infor-
mation. This means that any variables in scope when the closure is defined can
be used and modified by the closure.

One of the most common uses for a closure is processing a collection. For
example, we can iterate across the elements of a collection and apply the closure
to them. Groovy’s closures are one feature that make developing scripts so easy.

This chapter introduces the general concepts of closures. Appendix H
explores further features of closures, and Appendix J considers some advanced
topics.

9.1 closures

The syntax for defining a closure is:

{comma-separated-formal-parameter-list -> statement-list}

If no formal parameters are required, then the parameter List and the -> sepa-
rator are omitted. Here is a simple example of a closure with no parameters.

def clos={println ‘Hello world’}
clos.call()

EXAMPLE 01
A closure and its
invocation

Barclay chap09.qxd 02/01/1904 9:55 PM Page 85

Here, the closure has no parameters and consists of a single println statement.
The closure is referenced by the identifier clos. The code block referenced by
this identifier can be executed with the call statement, as shown in the example.
The result is to print the message:

Hello world

◆

By introducing formal parameters into closure definitions, we can make them
more useful, as we did with methods. Here is the same closure with the name
of the individual receiving the greeting now provided as a parameter:

def clos={param -> println “Hello ${param}”}

clos.call(‘world’) // actual argument is ‘world’
clos.call(‘again’) // actual argument is ‘again’
clos(‘shortcut’) // abbreviated form

When we execute this script, the output produced is:

Hello world
Hello again
Hello shortcut

◆

Observe the third invocation in which the call has been omitted.
The next illustration repeats the previous example and produces the same

result, but shows that an implicit single parameter referred to as it can be used.

def clos={println “Hello ${it}”}

clos.call(‘world’)
clos.call(‘again’)

clos(‘shortcut’)

We noted in the introduction that state information could be accessed by clo-
sures. More formally, closures can refer to variables at the time the closure is
defined. Consider Example 04. Here, the variable greeting defines the saluta-
tion. This variable is in scope before clos is defined and, hence, its value can be

86 C H A P T E R 9 Closures

EXAMPLE 02
Parameterized
closure

EXAMPLE 03
Implicit single
parameter

Barclay chap09.qxd 02/01/1904 9:55 PM Page 86

used when the closure is called. Initially, the variable greeting has the value
‘Hello‘.

def greeting=‘Hello’
def clos={param -> println “${greeting} ${param}”}
clos.call(‘world’)

// Now show that changes to this variable change the closure.
greeting=‘Welcome’
clos.call(‘world’)

Before the second call to the closure, the value of the variable greeting is
changed. This is reflected in the output produced by running the program:

Hello world
Welcome world

◆

In the next example, we augment the previous code with a method entitled
demo. It is passed a single argument clo, representing a closure. The method calls
this closure with the argument ‘Ken‘. The method also introduces a new scope
in which another variable greeting is bound to the value ‘Bonjour‘. This addi-
tional call generates the output:

Welcome Ken

and reveals that the state accessible to a closure is that in existence at the time
the closure is defined and not when it is called. Here is the illustration:

def greeting=‘Hello’
def clos={param -> println “${greeting} ${param}”}
clos.call(‘world’)

// Now show that changes to this variable change the closure.
greeting=‘Welcome’
clos.call(‘world’)

def demo(clo) {
def greeting=‘Bonjour’ // does not affect closure
clo.call(‘Ken’)

}

demo(clos)

9.1 closures 87

EXAMPLE 04
Closures and
enclosing scope

EXAMPLE 05
Effect of scope

Barclay chap09.qxd 02/01/1904 9:55 PM Page 87

The resulting output is:

Hello world
Welcome world
Welcome Ken

When calling methods that take a closure as the final parameter, Groovy offers
a simplification that makes the code somewhat easier to read. In the last exam-
ple, the method demo was called and the actual parameter was the closure. Where
the final parameter to a method call is a closure, then it can be removed from the
list of actual parameters and placed immediately after the closing parenthesis.
Hence, the call to method demo could appear as either of the following:

demo(clos) // closure parameter within the parentheses
demo() clos // parameter removed from parentheses

◆

This is demonstrated in the following example, where the closure is removed
from the actual parameters in the call to demo and its empty parameter list is
deleted.

88 C H A P T E R 9 Closures

EXAMPLE 06
Leave the closure
outside of the
actual argument
list

def greeting = ‘Hello’
def clos={param -> println “${greeting} ${param}”}

def demo(clo) {
def greeting=‘Bonjour’ // does not affect closure
clo.call(‘Ken’)

}

//demo() clos // 1: closure reference; include parentheses
demo() {param -> println “Welcome ${param}”} // 2: closure literal; include parentheses

demo clos // 3: closure reference; omit parentheses
demo {param -> println “Welcome ${param}”} // 4: closure literal; omit parentheses

Barclay chap09.qxd 02/01/1904 9:55 PM Page 88

The output is:

Welcome Ken
Hello Ken
Welcome Ken

◆

The final two program statements (numbered 3 and 4 in the comments) call the
method demo and pass a closure as the actual parameter. The first of these two
method calls uses a reference to a closure object while the second uses a closure
literal. In both illustrations, the parentheses for the method call are omitted.

Observe also the statements numbered 1 and 2 in the comments. The sec-
ond uses a closure literal and is acceptable to Groovy. However, the first uses a
closure reference and is not successfully identified as part of the statement. This
causes an execution error that reports that the method call is passed a null
parameter.

More usually, closures are applied to collections (see Section 9.2).
Effectively, we iterate over the elements in the collection and apply a closure to
each element. For example, all numeric types support a method entitled upto.
The signature for this method is:

void upto(Number to, Closure closure)

The programmer might call the method as in:

1.upto(10) {...}

This would call the closure literal 10 times. If the closure has a formal para-
meter p:

1.upto(10) {p -> ...}

then on each iteration, the parameter takes the value 1, 2, ..., 10.
The method upto iterates from the numeric value of the recipient number

(1) to the given parameter value (10), calling the closure on each occasion. We
can usefully employ this method to provide a way to compute the factorial of
some value. We use upto to generate the series of integers 1, 2, 3, ... to a given
limit. For each value, we compute the partial factorial until the series is com-
plete. Here is the code:

9.1 closures 89

Barclay chap09.qxd 02/01/1904 9:55 PM Page 89

def factorial=1
1.upto(5) {num -> factorial *= num}
println “Factorial(5): ${factorial}”

Running the script produces the output:

Factorial(5): 120

◆

9.2 closures, collections,
and strings

Several List, Map, and String methods accept a closure as an argument (see also
Appendix H). It is this combination of closures and collections that provides
Groovy with some elegant solutions to common programming problems. For
example, the each method with the signature:

void each(Closure closure)

is used to iterate through a List, Map, or String and apply the closure on every
element. Example 08 presents a number of simple examples of the each method
and a closure.

The first example prints the values 1, 2, 3, and 4 on separate lines. The final
example prints each letter of the name on a separate line. In the second illus-
tration, the keys and values from the Map are displayed in the style Ken=21. The
third demonstration separately accesses the key and value from the Map element
and prints them as Ken maps to: 21. The output is:

[1, 2, 3, 4].each {println it}

[‘Ken’ : 21, ‘John’ : 22, ‘Sally’ : 25].each {println it}
[‘Ken’ : 21, ‘John’ : 22, ‘Sally’ : 25].each {println “${it.key} maps to: ${it.value}”}

‘Ken’.each {println it}

90 C H A P T E R 9 Closures

EXAMPLE 08
Illustrations of
the method each
and a closure

EXAMPLE 07
Factorial with
closures

Barclay chap09.qxd 02/01/1904 9:55 PM Page 90

1
2
3
4
Sally=25
John=22
Ken=21
Sally maps to: 25
John maps to: 22
Ken maps to: 21
K
e
n

Often, we may wish to iterate across the members of a collection and apply
some logic only when the element meets some criterion. This is readily handled
with a conditional statement in the closure.

// even values only
[1, 2, 3, 4].each {num -> if(num % 2==0) println num}

// staff at least 25 years old
[‘Ken’ : 21, ‘John’ : 22, ‘Sally’ : 25].each {staff ->

if(staff.value>=25) println staff.key
}
[‘Ken’ : 21, ‘John’ : 22, ‘Sally’ : 25].each {staffName, staffAge ->

if(staffAge>=25) println staffName
}

// only lowercase letters
‘Ken’.each {letter -> if(letter>=‘a’ && letter<=‘z’) println letter}

The output from the script is:

2
4
Sally
Sally
e
n

Observe the two examples to find those staff members who are at least 25 years
old. In both cases, we iterate over a Map and apply a closure to each member of
the Map. In the first, the closure parameter staff is a Map.Entry that includes the
key and the value pair. Hence, to check the age, we use staff.value in the
Boolean expression. In the second example, the closure has two parameters
representing the two Map.Entry elements, namely, the key (staffName) and the
value (staffAge).

9.2 closures, collections, and strings 91

EXAMPLE 09
Conditional
elements

Barclay chap09.qxd 02/01/1904 9:55 PM Page 91

The find method finds the first value in a collection that matches some cri-
terion. The condition to be met by the collection element is specified in the clo-
sure that must be some Boolean expression. The find method returns the first
value found or null if no such element exists. The signature for this method is:

Object find(Closure closure)

// locate the value 7
def value=[1, 3, 5, 7, 9].find {element->element>6}
println “Found: ${value}”

// locate no value (null)
value=[1, 3, 5, 7, 9].find {element->element>10}
println “Found: ${value}”

// first staff member over 21
value=[‘Ken’ : 21, ‘John’ : 22, ‘Sally’ : 25].find {staff->staff.value>21}
println “Found: ${value}”

Output from this script is:

Found: 7
Found: null
Found: Sally=25

Notice that when we apply find to a Map, the return object is a Map.Entry. It
would not, in this case, be appropriate to use a pair of parameters for the key
and the value, as in:

value=[‘Ken’ : 21, ‘John’ : 22, ‘Sally’ : 25].find {key, value -> value > 21}

since we are then not able to specify what is returned, the key or the value.
Whereas the find method locates the first item (if any) in a collection that

meets some criterion, the method findAll finds all the elements, returning them
as a List. The signature for this method is:

List findAll(Closure closure)

It finds all values in the receiving object matching the closure condition.
Example 11 gives some examples of using findAll. The second illustration
reveals how simple closures can be combined to implement more complex
algorithms. The merit of this approach is that each closure is relatively simple to
express.

92 C H A P T E R 9 Closures

EXAMPLE 10
Illustrations of
the find method
and closures

Barclay chap09.qxd 02/01/1904 9:55 PM Page 92

// Find all items that exceed the value 6
def values=[1, 3, 5, 7, 9].findAll {element->element>6}
values.each {println it}

// Combine closures by piping the result of findAll
// through to each

[1, 3, 5, 7, 9].findAll {element->element> 6}.each {println it}

// Apply a findAll to a Map finding all staff over the age of 24

values.each {println it}

Again, applying findAll to a Map delivers a List of Map.Entry elements. This is
shown by the final line of output from the script:

7
9
7
9
Sally=25

Two other related methods that take a closure argument are any and every.
Method any iterates through each element of a collection checking whether a
Boolean predicate is valid for at least one element. The predicate is provided by
the closure. Method every checks whether a predicate (a closure that returns a
true or false value) is valid for all the elements of a collection, returning true
if they do so and false otherwise. The signatures for these methods are:

boolean any(Closure closure)
boolean every(Closure closure)

◆

Example 12 shows some representative examples.

// Any number over 12?
def anyElement=[11, 12, 13, 14].any {element -> element>12}
println “anyElement: ${anyElement}”

// Are all values over 10?
def allElements=[11, 12, 13, 14].every {element -> element>10}
println “allElements: ${allElements}”

// Any staff member over the age of 30?

println “anyStaff: ${anyStaff}”
def anyStaff=[‘Ken’ : 21, ‘John’ : 22, ‘Sally’ : 25].any {staff -> staff.value>30}

values=[‘Ken’ : 21, ‘John’ : 22, ‘Sally’ : 25].findAll {staff->staff.value>24}

9.2 closures, collections, and strings 93

EXAMPLE 11
Illustrations of
the method
findAll and
closures

EXAMPLE 12
Examples of
methods any and
every

Barclay chap09.qxd 02/01/1904 9:55 PM Page 93

When we run this script, we get the output:

anyElement: true
allElements: true
anyStaff: false

◆

Two further methods that we wish to consider are collect and inject. Again,
both have a closure as a parameter. The method collect iterates through a col-
lection, converting each element into a new value using the closure as the trans-
former. The method also returns a new List of the transformed values. It has
the signature:

List collect(Closure closure)

Example 13 shows simple uses for this method.

// Square of the values
def list=[1, 2, 3, 4].collect {element->return element * element}
println “list: ${list}”

// Square of the values (no explicit return)
list=[1, 2, 3, 4].collect {element->element * element}
println “list: ${list}”

// Double of the values (no explicit return)
list=(0..<5).collect {element->2 * element}
println “list: ${list}”

// Age by one year
def staff=[‘Ken’ : 21, ‘John’ : 22, ‘Sally’ : 25]
list=staff.collect {entry -> ++entry.value}
def olderStaff=staff.collect {entry -> ++entry.value; return entry}
println “staff: ${staff}”
println “list: ${list}”
println “olderStaff: ${olderStaff}”

Running this, we get the output:

list: [1, 4, 9, 16]
list: [1, 4, 9, 16]
list: [0, 2, 4, 6, 8]
staff: [Sally:27, John:24, Ken:23]
list: [26, 23, 22]
olderStaff: [Sally=27, John=24, Ken=23]

94 C H A P T E R 9 Closures

EXAMPLE 13
Sample uses of
collect method

Barclay chap09.qxd 02/01/1904 9:55 PM Page 94

The third example of method collect is applied to a Range. This is permissible
since the Range interface extends the List interface and can, therefore, be used
in place of Lists. Observe also the illustration that iterates across the staff col-
lection, increasing the age by 1. The returned value is a List of the new age val-
ues from the Map. The recipient Map object referred to as staff is also modified
by the closure. The final example that assigns to oldStaff builds a List of
Map.Entrys, with the age increased again.

◆

Example 14 further illustrates the collect method. Note the method map,
which applies the closure parameter to the collect method over the list
parameter. The map method is used for doubling, tripling, and for finding those
that are even-valued elements of a list of integers. We shall find further uses for
this map algorithm (see Appendix J).

// A series of closures
def doubles={item -> 2 * item}
def triples={item -> 3 * item}
def isEven={item -> (item % 2==0)}

// A method to apply a closure to a list
def map(clos, list) {

return list.collect(clos)
}

// Uses:
println “Doubling: ${map(doubles, [1, 2, 3, 4])}”
println “Tripling: ${map(triples, [1, 2, 3, 4])}”
println “Evens: ${map(isEven, [1, 2, 3, 4])}”

The output from the script is:

Doubling: [2, 4, 6, 8]
Tripling: [3, 6, 9, 12]
Evens: [false, true, false, true]

◆

The final method that we explore in this section is entitled inject. This method
iterates through a List, passing the initial value to the closure together with the
first element, and then passing into the next iteration the computed value from
the previous closure and the next element of the collection, and so on. Here is
its signature:

Object inject(Object value, Closure closure)

9.2 closures, collections, and strings 95

EXAMPLE 14
Further examples
of collect

Barclay chap09.qxd 02/01/1904 9:55 PM Page 95

Here are three examples of finding the factorial of 5.

The output is:

Factorial(5): 120
Fact: 120
Factorial(5): 120
Factorial(5): 120

◆

The segment of code that uses the variable fact aims to show that the result of
method inject can be achieved using an each iterator method. First, the variable
fact is assigned the value of the first parameter to inject (here, 1). Then, we iter-
ate through each element of the List. For the first value (number = 2), the closure
evaluates fact *=number, that is, fact=1 *2=2. For the second value (number = 3),
the closure again evaluates fact *=number, that is, fact=2 *3=6, and so on.

9.3 other closure features

Since a closure is an Object, it can be a parameter to a method. In Example 16,
the simple filter method expects two parameters, a List and a closure. The
method finds all those elements of the list that satisfy the condition specified by
the closure using, of course, method findAll. The program then demonstrates
two uses for the method.

// Direct usage
def factorial=[2, 3, 4, 5].inject(1) {previous, element -> previous * element}
println “Factorial(5): ${factorial}”

// Equivalence
def fact=1
[2, 3, 4, 5].each {number->fact *= number}
println “fact: ${fact}”

// Named list
def list=[2, 3, 4, 5]
factorial=list.inject(1) {previous, element->previous * element}
println “Factorial(5): ${factorial}”

// Named list and closure
list = [2, 3, 4, 5]
def closure = {previous, element -> previous * element}
factorial = list.inject(1, closure)
println “Factorial(5): ${factorial}”

96 C H A P T E R 9 Closures

EXAMPLE 15
Factorial of 5

Barclay chap09.qxd 02/01/1904 9:55 PM Page 96

// Find those items that qualify
def filter(list, predicate) {

return list.findAll(predicate)
}

// Two predicate closure
def isEven={x -> return (x % 2==0)}
def isOdd={x -> return ! isEven(x)}

def table=[11, 12, 13, 14]

// Apply filter
def evens=filter(table, isEven)
println “evens: ${evens}”

def odds=filter(table, isOdd)
println “odds: ${odds}”

The output reveals that the variable evens is a List of all the even-valued inte-
gers from the table.

evens: [12, 14]
odds: [11, 13]

Closures can also be parameters to other closures. Example 17 introduces a clo-
sure takeWhile that delivers those elements from the beginning of a List that
meets some criteria defined by the closure parameter named predicate.

// Find initial list that conforms to predicate
def takeWhile={predicate, list ->

def result=[]
for(element in list) {

if(predicate(element)) {
result<<element

} else
return result

}
return result

}

// Two predicate closures
def isEven={x -> return (x % 2==0)}
def isOdd={x -> return ! isEven(x)}

def table1=[12, 14, 15, 18]
def table2=[11, 13, 15, 16, 18]

// Apply takeWhile
def evens=takeWhile.call(isEven, table1)
println “evens: ${evens}”

9.3 other closure features 97

EXAMPLE 16
Closures as method
parameters

EXAMPLE 17
Closures
as parameters to
closures

Barclay chap09.qxd 02/01/1904 9:55 PM Page 97

def odds=takeWhile(isOdd, table2)
println “odds: ${odds}”

The variable evens has the even-valued integer prefix from table1. This is
shown by the program output:

evens: [12, 14]
odds: [11, 13, 15]

◆

In Example 18, the method multiply is defined. It accepts a single parameter
and returns a closure. This closure multiplies two values, one of which is pre-set
to the value of the method parameter. The variable twice is now a closure that
returns double the value of its single parameter. In a similar manner, the closure
multiplication accepts a single parameter and returns a closure. Like method
multiply, the closure it returns multiplies its parameter by some predefined
value. The closure quadruple multiplies its single parameter by the value 4.

// Method returning a closure
def multiply(x) {

return {y -> return x * y}
}

def twice = multiply(2)

println “twice(4): ${twice(4)}”

// Closure returning a closure
def multiplication={x -> return {y -> return x * y}}

def quadruple=multiplication(4)

println “quadruple(3): ${quadruple(3)}”

The output demonstrates that the closure twice does indeed double its param-
eter while the closure quadruple multiplies its parameter by 4:

twice(4): 8
quadruple(3): 12

The final example we consider demonstrates that a closure may contain other
nested closure definitions. In Example 19, we define the closure selectionSort,
which sorts a list of integers into ascending order. To implement this closure, we
are required to locate the smallest item of the unsorted tail region of the list and

98 C H A P T E R 9 Closures

EXAMPLE 18
Closures as return
values

Barclay chap09.qxd 02/01/1904 9:55 PM Page 98

move it to the front. Moving the item to the front of the tail region actually
involves swapping the front item with the smallest item. Hence, we implement
the closure selectionSort with two local closures, minimumPosition and swap.
The latter does the exchange we require, and the former finds the smallest item
in the tail region of the List.

def selectionSort={list ->

def swap={sList, p, q ->
def temp=sList[p]
sList[p]=sList[q]
sList[q]=temp

}
def minimumPosition={pList, from ->

def mPos=from
def nextFrom=1 + from
for(j in nextFrom..<pList.size()) {

if(pList[j] < pList[mPos])
mPos=j

}
return mPos

}

def size=list.size() –1
for(k in 0..<size) {

def minPos=minimumPosition(list, k)
swap(list, minPos, k)

}

return list
}

def table=[13, 14, 12, 11, 14]

def sorted=selectionSort(table)

println “sorted: ${sorted}”

Running the program produces the desired result:

sorted: [11, 12, 13, 14, 14]

◆

We have to be especially diligent about the scope rules of variables and param-
eters when working with closures. See Appendices H and J for further discus-
sion on these and other aspects of closures.

9.3 other closure features 99

EXAMPLE 19
Selection sort

Barclay chap09.qxd 02/01/1904 9:55 PM Page 99

9.4 exercises

1. Write a method intersect with two List parameters that find those ele-
ments that are common to both lists.

2. Write a method union with two List parameters that finds those elements
that are in the first list, the second list, or both lists.

3. Write a method subtract with two List parameters that finds those ele-
ments that are in the first list but not in the second list.

4. Modify the code from the case study in Chapter 6 to use closures to for-
mat the output from the scripts.

5. Given a Map that represents the employees and their managers as in staff
= [‘Ken’ : [‘John’, ‘Peter’], ‘Jon’ : [‘Ken’, ‘Jessie’], ‘Jessie’
: [‘Jim’, ‘Tom’]]. This shows that Ken supervises John and Peter, while
Jessie is supervised by Jon. Develop the method findManagerOf(name,
staff) that finds the manager of the employee with name. Use this to
develop the method findNoManager(staff) to find a list of staff with no
immediate manager.

6. A Map of nested Maps is used to represent a hotel. The outermost Map is
indexed by an integer that represents a floor number. The value for each
floor number key is an inner Map. Each inner Map is indexed by an integer
representing a room number. The value for the room number key is a list
of values detailing the hotel room. An example is hotel = [1 : [1 :
[‘Bedroom’, 2], 2 : [‘Bedroom’, 4], 3 : [‘Studyroom’, 10]], 2 :
[1 : [‘Bedroom’, 4], 2 : [‘Bedroom’, 4]], 3 : [1 : [‘Bedroom’,
4], 2 : [‘Conferenceroom’, 25, ‘Balmoral’]]]. Here, the first floor has
three rooms: two bedrooms and a study room. One bedroom has a capac-
ity of 2 while the other has a capacity of 4. The study room has a capacity
of 10. On the top floor there is a conference room, entitled the Balmoral
with a capacity of 25. Provide the method printAllRooms(hotel) that
prints the floors and their rooms. Also, develop the method
printRoomsOnFloor(hotel, floorNumber) that prints rooms occupying the
given floor.

7. Offer an explanation for the purpose of the two closures lSubtract and
rSubtract given as:

def lSubtract={x -> return {y -> return x –y}}
def rSubtract={y -> return {x -> return x –y}}

100 C H A P T E R 9 Closures

Barclay chap09.qxd 02/01/1904 9:55 PM Page 100

What kinds of object are p and q defined as:

def p=lSubtract(100)
def q=rSubtract(1)

and what would be the effect of the following:

println “p(25): ${p(25)}”
println “q(9): ${q(9)}”

The closure comp is defined by:

def comp={f, g -> return {x -> return f(g(x))}}

Provide a detailed explanation for its behavior. Now, discuss what is pro-
duced by the closure calls:

def r=comp(p, q)
def s=comp(q, p)

then predict the output from:

println “r(10): ${r(10)}”
println “s(10): ${s(10)}”

8. A software house is contracted to develop Groovy, Java, and C# projects.
Each project has one or more programmers involved, with perhaps the
same individual associated with more than one project. For example, the
following shows Ken, John, and Jon involved with the Groovy project:

def softwareHouse=[‘Groovy’ : [‘Ken’, ‘John’, ‘Jon’],
‘Java’ : [‘Ken’, ‘John’],
‘C#’ : [‘Andrew’]
]

Predict the effect of each of the following:

(b) softwareHouse[‘Groovy’].each {g ->
softwareHouse[‘Java’].each {j ->

if(g==j) println “${g}”
}

}

(a) softwareHouse.each {key, value -> if(value.size()>=2) println “${value}”}

9.4 exercises 101

Barclay chap09.qxd 02/01/1904 9:55 PM Page 101

9. A university has a number of departments, each of which is responsible
for one or more programs of study. For example, the following shows that
the Computing Department has two programs, Computing and
Information Systems. Respectively, they have 600 and 300 enrolled
students.

Predict the effect of the following:

university.each {k, v ->
v.each {ke, va ->

if(va>=300) println “${k}: ${ke}”
}

}

10. Repeat exercise 14 from Chapter 7. This time, develop explode, implode,
and reverseString as closures local to the closure isPalindrome.

def university = [‘Computing’ : [‘Computing’ : 600, ‘Information Systems’ : 300],
‘Engineering’ : [‘Civil’ : 200, ‘Mechanical’ : 100],
‘Management’ : [‘Management’ : 800]
]

102 C H A P T E R 9 Closures

Barclay chap09.qxd 02/01/1904 9:55 PM Page 102

103

C H A P T E R 10
files

The programs that we have studied have all produced some output and, in
many cases, accepted some input. This has been achieved through using the
standard input (keyboard) and standard output (screen). However, these simple
programs are unrepresentative of many computer applications. In practice, most
applications involve the permanent storage of data in a computer file. In this
chapter, we consider applications that process files.

10.1 command line arguments

A Groovy program exists in an environment established by the operating sys-
tem. The environment supports passing command line arguments to a program
when it begins execution. In a Groovy script, such as that in Example 01, these
arguments can be accessed by the args variable, which is an array of Strings.

println “args: ${args}”
println “size: ${args.size()}”
println “First arg: ${args[0]}”

If it is executed with the command:

groovy example01.groovy aaa bbb ccc

then the output produced is:

EXAMPLE 01
Command line
arguments

Barclay chap10.qxd 02/01/1904 9:55 PM Page 103

args: {“aaa”, “bbb”, “ccc”}
size: 3
First arg: aaa

◆

We see that the args variable only includes the arguments. Method size can be
used to obtain the number of items in the array variable args, which may be
indexed in the usual manner.

10.2 file class

Operating systems use system-dependent pathname strings to name files and
directories. The File class presents an abstract, system-independent view of
hierarchical pathnames. At its simplest, an abstract pathname is a sequence of
zero or more String names. Except for the final String, the others represent
directories. The last may represent a file or a directory. In an abstract pathname,
a separator character separates each String name. Some example pathnames are:

104 C H A P T E R 10 Files

myfile.txt // simple file
docs/report.doc // file in docs subdirectory
src/groovy/example01.groovy // file in nested subdirectories
src/groovy // directory
c:/windows // MS Windows directory and disk drive specifier

A File object can represent either a file or a directory. The methods in the File class
provide operations whereby we can determine, among other things, whether the
File object exists, whether it represents a file or a directory, whether the file is read-
able or writeable, and what the size of the file is. Further, Groovy has augmented
the File class with methods that accept a closure as parameter. These methods
prove particularly useful for traversing the content of a file or directory and pro-
cessing it. Some common File methods are listed in Table 10.1. Again, methods
marked with an asterisk are the augmented methods of the GDK. For example,
method eachLine iterates through a text file, line by line, and applies a closure.

Example 02 is a program to tabulate the content of a file. The line parameter
of the closure represents the next line from the file. The end-of-line character is
not part of this line parameter. Hence, the println is required to display each line
in the file on separate output lines. In the code, a new File object is created,
processed, and closed when complete. Since the File object is otherwise not ref-
erenced, there is no requirement to reference it by a variable.

Barclay chap10.qxd 02/01/1904 9:55 PM Page 104

10.2 file class 105

EXAMPLE 02
Read and display a
file, line-at-a-
time

Name Signature/description

append * void append(String text)
Append the text at the end of this file.

createNewFile Boolean createNewFile()
Create a new, empty file named by this abstract pathname if and only if
a file with this name does not yet exist.

delete Boolean delete()
Delete the file or directory denoted by this abstract pathname.

eachFile * void eachFile(Closure closure)
Invoke the closure for each file in the given directory.

eachFileRecurse * void eachFileRecurse(Closure closure)
Invoke the closure for each file in the given directory, and recursively
to each subdirectory.

eachLine * void eachLine(Closure closure)
Iterate through the given file line by line.

exists Boolean exists()
Test whether the file or directory denoted by this abstract pathname
exists.

getPath String getPath()
Convert this abstract pathname into a pathname String.

getText * String getText()
Read the content of this file and return it as a String.

isDirectory Boolean isDirectory()
Test whether the file denoted by this abstract pathname is a directory.

mkdir Boolean mkdir()
Create the directory named by this abstract pathname.

withPrintWriter * void withPrintWriter(Closure closure)
Helper method to create a new PrintWriter for this file, pass
it into the closure, and ensure that it is closed again afterwards.

TABLE 10.1 Common File methods

import java.io.File

if(args.size() != 1)
println ’Usage: example02 filename’

else {
// Print each line of the file

new File(args[0]).eachLine { line ->
println “Line: ${line}”

}
}

Barclay chap10.qxd 02/01/1904 9:55 PM Page 105

Note that if the file given as a command argument does not exist, then calling
eachLine on it will raise an exception. If the input file contains:

This is the first line
This is the second line
This is the third line
This is the fourth line

then the output from the program is:

Line: This is the first line
Line: This is the second line
Line: This is the third line
Line: This is the fourth line

◆

A useful utility program from the Unix operating system is a program entitled
“wc”. This program scans a text file and obtains counts for the number of char-
acters, words, and lines in the file. This is readily implemented in Groovy as
shown in the following example.

import java.io.File

// Counters
def chars = 0
def words = 0
def lines = 0

if(args.size() != 1)
println ‘Usage: example03 filename’

else {
// Process the file

new File(args[0]).eachLine { line ->
chars += 1 + line.length()
words += line.tokenize().size()
lines++

}

// Print the outcome
println “chars: ${chars}; words: ${words}; lines: ${lines}”

}

Using the same file as previously produces:

chars: 94; words: 20; lines: 4

◆

106 C H A P T E R 10 Files

EXAMPLE 03
wc utility

Barclay chap10.qxd 02/01/1904 9:55 PM Page 106

Class File also includes the method eachFile. Normally, it is used for a File
object that represents a directory. Once again, it accepts a closure as a parame-
ter and invokes that closure for each file in the directory. In the following exam-
ple, method printDir accepts the name of a directory as parameter. It simply
invokes the support method listDir that expects a File object as first parame-
ter and an integer as the second parameter. The File object represents a direc-
tory. The method listDir calls the eachFile method on that File object and
the closure prints the names of the file in the directory. If any of these represent
a subdirectory, then the listDir method recursively calls itself. The integer
parameter is used to specify the level of indentation required by the listing. Each
recursive call increases this value.

import java.io.File

// List the content of a directory File
def listDir(dirFile, indent) {

dirFile.eachFile { file ->
(0..<indent).each { print “ “ }
println “${file.getName()}”
if(file.isDirectory())

listDir(file, 2 + indent)
}

}

// Print the content of a named directory
def printDir(dirName) {

listDir(new File(dirName), 0)
}

if(args.size() != 1 ⎜⎜ new File(args[0]).isDirectory() == false)
println ‘Usage: example04 directory’

else {
// Print the current directory

printDir(args[0])
}

◆

Class File also supports the method eachFileRecurse. As its name suggests, the
method iterates through all the files of a directory and recursively through any
subdirectory. We might, for example, use this to identify those files that exceed
a particular length. Example 05 shows this.

10.2 file class 107

EXAMPLE 04
Directory listing

Barclay chap10.qxd 02/01/1904 9:55 PM Page 107

import java.io.File

// List those files exceeding a given size
def printDir(dirName, size) {

new File(dirName).eachFileRecurse { file ->
if(file.length() > size)

println “${file.getName()}”
}

}

if(args.size() != 2 ⎜⎜ new File(args[0]).isDirectory() == false)
println ’Usage: example05 directory’

else {
// List from the current directory

printDir(args[0], args[1].toInteger())
}

◆

With the aid of a PrintWriter object, we can copy the contents of one file to
another. The PrintWriter class is used to print formatted representations of
objects to a file. Combining PrintWriter with File and eachLine produces an
elegant implementation. First, we check for the existence of the destination file.
If it exists, then it is removed. Class File has a method newPrintWriter that
delivers a PrintWriter object for the given destination file. We then copy each
line from the source file to the destination file.

import java.io.*

if(args.size() != 2)
println ‘Usage: example06 filename filename’

else {
// Write to a destination file

def outFile = new File(args[1])
if(outFile.exists())

outFile.delete()

// Create a PrintWriter
def printWriter = outFile.newPrintWriter()

// Copy each line of the file
new File(args[0]).eachLine { line ->

printWriter.println(line)
}

108 C H A P T E R 10 Files

EXAMPLE 06
File copying

EXAMPLE 05
Recursively
traversing a
directory

Barclay chap10.qxd 02/01/1904 9:55 PM Page 108

// Close up
printWriter.flush()
printWriter.close()

}

◆

Class File also provides a number of helper methods to support input/output
(see GDK documentation). For example, the method withPrintWriter creates
a new PrintWriter for the file and then passes it into the closure and ensures
that it is closed afterwards. Other such helper methods include
withInputStream, withOutputStream, withReader, and withWriter. Example 07
repeats the previous example using a PrintWriter.

import java.io.*

if(args.size() != 2)
println ‘Usage: example07 filename filename’

else {
// Write to a destination file

new File(args[1]).withPrintWriter { printWriter ->

// Copy each line of the file
new File(args[0]).eachLine { line ->

printWriter.println(line)
}

}
}

◆

A common task is to sort a text file. This is relatively simple to realize in Groovy
for small- to medium-sized files since we already have the sort method for
Lists. We can read each line from the file into a List, perform an internal sort,
and then write the result back out to the same file. An implementation for this
is given in Example 08.

import java.io.*

if(args.size() != 1)
println ‘Usage: example08 filename’

else {
def lines = []

10.2 file class 109

EXAMPLE 07
File copying with
a PrintWriter

EXAMPLE 08
Sorting a file

Barclay chap10.qxd 02/01/1904 9:55 PM Page 109

// Read from the text file
new File(args[0]).eachLine { line ->

lines << line
}

// Sort the text
lines.sort()

// Write back to text file
new File(args[0]).withPrintWriter { printWriter ->

lines.each { line ->
printWriter.println(line)

}
}

}

Finally, consider a data file of the form:

John 2:30PM
Jon 10:30AM
// ...

that is used to maintain a List of events for a day diary. From this data, we wish
to produce a report of that day’s events in time order. If each entry from the file
is placed into a List, then we can sort them on the time values. The sort
method can accept a closure that operates as the comparator to find the order-
ing of the values. A regular expression can be used to extract the time from each
line (see Chapter 3 and Appendix D). It might look like:

(\\d{1,2}):(\\d{2})([AP]M)

The digits and the suffix are grouped so that we can extract the individual ele-
ments to make the comparison. The complete regular expression for the diary
entries is:

(\\w*)\\s((\\d{1,2}):(\\d{2})([AP]M))

◆

The code for this is given in Example 09. Note how we have used the compareTo
operator <=> to great effect.

110 C H A P T E R 10 Files

Barclay chap10.qxd 02/01/1904 9:55 PM Page 110

if(args.size() != 1)
println ‘Usage: groovy9 filename’

else {
def TIME_PATTERN = ‘(\\w*)\\s((\\d{1,2}):(\\d{2})([AP]M))’
def diary = []

// read the file
new File(args[0]).eachLine { entry ->

diary << entry
}

// sort the entries
diary.sort { entry1, entry2 ->

def matcher1 = entry1 =~ TIME_PATTERN
def matcher2 = entry2 =~ TIME_PATTERN
matcher1.matches()
matcher2.matches()

def cmpMeridian = matcher1[0][5] <=> matcher2[0][5]
def cmpHour = matcher1[0][3].toInteger() <=> matcher2[0][3].toInteger()
def cmpMinute = matcher1[0][4].toInteger() <=> matcher2[0][4].toInteger()
return ((cmpMeridian != 0) ? cmpMeridian : (cmpHour != 0) ? cmpHour : cmpMinute)

}

println ‘Diary events’
diary.each { entry -> println “ ${entry}” }

}

10.3 exercises 111

EXAMPLE 09
Diary report

10.3 exercises

1. Rewrite Example 07 to perform file copying and double-space the text.

2. Write a program to copy one text file to another, removing any blank
lines in the source file. The file names are given as command line argu-
ments.

3. Write a program to number the lines in a text file. The input file name
should be passed as a command line argument. The program should write
to the standard output.

4. Write a program which concatenates a set of named input files on to the
standard output. One or more file names are to be given as command line
arguments.

Barclay chap10.qxd 02/01/1904 9:55 PM Page 111

5. Write a program that operates in a manner similar to the Unix grep util-
ity. The program accepts two command line arguments: a pattern and a
text file name. The program should print those lines of the file matching
the pattern.

6. Prepare a variant of Example 08 with a command line option –r to
reverse the direction of sorting.

112 C H A P T E R 10 Files

Barclay chap10.qxd 02/01/1904 9:55 PM Page 112

113

C H A P T E R 11
case study: a l ibrary
application ⁽methods,
closures ⁾

This chapter illustrates the power of Groovy methods and closures by con-
structing solutions to the small case study first introduced in Chapter 6. As
before, we present a simple model of the loan data kept by a library. Our library
maintains a record of the titles of the books in stock and the names of the bor-
rowers who have been loaned one or more books.

As in the case study of Chapter 6, we develop the library application as a
series of iterations. This lets us add functionality to the application in a con-
trolled manner. It also ensures that we have a working (partial) solution as early
as possible. The first iteration demonstrates that we can achieve the required
functionality while the second implements a simple text-based, command-line
user interface. In the third iteration, we simplify the coding of the second. Our
aim is to make it easier to understand and maintain.

11.1 iteration 1 : specification
and map implementation

The problem specification requires that we manage and maintain the library
loan stock. We are required to implement the following use cases:

Barclay chap11.qxd 02/01/1904 9:55 PM Page 113

● Add and remove books to/from the loan stock

● Record the loan and return of a book

● Display details of the current loan stock

● Display the number of books on loan to a given borrower

● Display the number of borrowers of a book

Having established an external view of the application in the use cases, there are
various ways in which we can model it. We have already seen two possible solu-
tions in Chapter 6, that is, using the List and Map data structures. For this iter-
ation, we employ a Map to represent the library’s stock of books. One reason for
our choice is that the Map is ideally suited for the efficient storage and retrieval
of information. We anticipate that this will be useful for implementing the
library application.

Our intention is that the Map should be keyed by the title of each book and
each corresponding value should be a List of the names of its borrowers. The
assumption we have made is that there is a copy of each book for every borrower
named in the List. Another useful feature of the Map is that its keys are unique.
This eliminates the possibility of duplicate entries for a book title in the library’s
database.

In the Map, the value for each key is a List whose elements are zero or more
Strings. Each String represents a borrower’s name. Note that a List may con-
tain duplicate elements. The assumption we have made is that a borrower may
borrow several copies of a particular book. A List may also be empty. In this
case, the book title that is its key represents a book not currently out on loan.
A sample initialization of the loans database is:

114 C H A P T E R 11 Case Study: A Library Application (Methods, Closures)

deflibrary=[‘Groovy’:[‘Ken’,‘John’],’OOD’:[‘Ken’],‘Java’:[‘John’,‘Sally’],‘UML’:[‘Sally’],‘Basic’:[]]

The resulting Map data structure is illustrated diagrammatically in Figure 11.1.
The figure shows that there are two Groovy books on loan to Ken and John, one
OOD book to Ken, two Java books to John and Sally, and one UML book to Sally.
Notice that the book titled Basic is not currently on loan, reflected by the fact
that the value is an empty List.

The functionality required by this simple application is easily realized by
Groovy methods. Each method implements one of the use cases identified from
the specification. Had any of them proved particularly complicated, then, of
course, we could have broken it down in to simpler methods. Note that
although we use the term “method,” we might just as well have used the term
“procedure” in this context, because we are effectively taking a procedural

Barclay chap11.qxd 02/01/1904 9:55 PM Page 114

11.1 iteration 1 : specification and map implementation 115

approach (Deitel, 2003) to the development of this case study. As with many
scripting applications, we require no more than some simple procedural code to
implement a solution.

To access the List of borrower names associated with a particular book title,
we use the Map index operator [] (from the GDK) with the book title as the
index value. This simplifies our coding task considerably. For example, to add a
new book we have:

def addBook(library, bookTitle) {
library[bookTitle] = []

}

and to determine the number of borrowers of a particular book, we have:

def readNumberBorrowers(library, bookTitle) {
return library[bookTitle].size()

}

As in the partial listing of Library 01, most of the other methods are just as
straightforward. For the sake of clarity, the various displays are intentionally
simple but we remedy this in later chapters.

def addBook(library, bookTitle) {
library[bookTitle] = []

}

Key

Groovy

Basic

UML

Java

OOD

Value

Ken, John

Sally

John, Sally

Ken

LIBRARY 01
A Library
application—its
methods

FIGURE 11.1 Sample Map data structure for the library application.

Barclay chap11.qxd 02/01/1904 9:55 PM Page 115

def removeBook(library, bookTitle) {
library.remove(bookTitle)

}

def lendBook(library, bookTitle, borrowerName) {
library[bookTitle] << borrowerName

}

def returnBook(library, bookTitle, borrowerName) {
library[bookTitle].remove(borrowerName)

}

def displayLoanStock(library) {
println “Library stock: ${library} \n”

}

def readNumberBorrowedBooks(library, borrowerName) {
//
// get a List of each List of the borrower names from the library

def borrowerNames = library.values().asList()
//
// create a single List of the borrower names

borrowerNames = borrowerNames.flatten()
//
// return the number of borrower names in the List

return borrowerNames.count(borrowerName)
}

def readNumberBorrowers(library, bookTitle) {
return library[bookTitle].size()

}

// More code follows ...

◆

Notice that each method has library as a formal parameter. This is in keeping
with a procedural style of software development in which procedures read or
write from/to a central data structure. In our case study, it is, of course, the
library database, implemented as a Map.

To test that our methods execute as expected, we develop a test case for each
use case. In this simple version of the case study, we just check each output visu-
ally and assume perfect input data. For example, the test case for the display of
the loan stock just prints the underlying Map on the console screen. We compare
the output visually with that expected from the initialization of the Map. Clearly,
this approach does work but it is not very realistic. Later in Chapter 15, we dis-
cuss testing in more detail. However, for the moment, this approach will suffice.

116 C H A P T E R 11 Case Study: A Library Application (Methods, Closures)

Barclay chap11.qxd 02/01/1904 9:55 PM Page 116

As with the iterative development of the application, it is often useful to
introduce test-cases incrementally, that is, one at a time. This reduces the risk
that the testing burden might overwhelm us and builds confidence in our soft-
ware as testing progresses. For example, we might start with the script:

// methods as shown previously
// ...

// Initialize the loan stock

// Test Case: Display loan stock
println ‘Test Case: Display loan stock’
displayLoanStock(library)

◆

Happily, it produces the expected output:

Test Case: Display loan stock

We now add another test case:

// methods, initialization and test case as shown previously
// ...

// Test Case: Add a new book
println ‘Test Case: Add a new book’
addBook(library, ‘C#’)
displayLoanStock(library)

◆

Again, it produces the expected output:

Test Case: Display loan stock
Library stock: [“Groovy”:[“Ken”, “John”], “UML”:[“Sally”], “Java”:[“John”, “Sally”], “OOD”:[“Ken”],
“Basic”:[]]

Library stock: [“Groovy”:[“Ken”, “John”], “UML”:[“Sally”], “Java”:[“John”, “Sally”], “OOD”:[“Ken”],
“Basic”:[]]

def library = [‘Groovy’ : [‘Ken’, ‘John’], ’OOD’ : [‘Ken’], ‘Java’ : [‘John’, ‘Sally’], ‘UML’ : [‘Sally’],
‘Basic’ : []]

11.1 iteration 1 : specification and map implementation 117

LIBRARY 01
A Library
application—the
first test case

LIBRARY 01
A Library
application—the
second test case

Barclay chap11.qxd 02/01/1904 9:55 PM Page 117

We continue in this manner, adding the remaining test cases one at a time,
checking and correcting code as necessary.

// methods, initialization and test case as shown previously
// ...

// Test Case: Remove a book
println ‘Test Case: Remove a book’
removeBook(library, ‘UML’)
displayLoanStock(library)

// Test Case: Record a book loan to a borrower
lendBook(library, ‘Java’, ‘Ken’)
println ‘Test Case: Record a book loan to a borrower’
displayLoanStock(library)

// Test Case: Record a book return by a borrower
returnBook(library, ‘Java’, ‘Sally’)
println ‘Test Case: Record a book return by a borrower’
displayLoanStock(library)

// Test Case: Display the number of books on loan to a borrower
println ‘Test Case: Display the number of books on loan to a borrower’
println “Number of books on loan to Ken: ${readNumberBorrowedBooks(library, ‘Ken’)} \n”

// Test Case: Display the number of borrowers of a book
println ‘Test Case: Display the number of borrowers of a book’
println “Number of borrowers of Java: ${readNumberBorrowers(library, ‘Java’)} \n”

The final output is:

Test Case: Display loan stock
Library stock: [“Groovy”:[“Ken”, “John”], “UML”:[“Sally”], “Java”:[“John”, “Sally”], “OOD”:[“Ken”],
“Basic”:[]]

Test Case: Add a new book
Library stock: [“Groovy”:[“Ken”, “John”], “UML”:[“Sally”], “Java”:[“John”, “Sally”], “OOD”:[“Ken”],
“Basic”:[], “C#”:[]]

Test Case: Remove a book
Library stock: [“Groovy”:[“Ken”, “John”], “Java”:[“John”, “Sally”], “OOD”:[“Ken”], “Basic”:[], “C#”:[]]

118 C H A P T E R 11 Case Study: A Library Application (Methods, Closures)

Test Case: Add a new book
Library stock: [“Groovy”:[“Ken”, “John”], “UML”:[“Sally”], “Java”:[“John”, “Sally”], “OOD”:[“Ken”],
“Basic”:[], “C#”:[]]

Barclay chap11.qxd 02/01/1904 9:55 PM Page 118

Test Case: Record a book loan to a borrower
Library stock: [“Groovy”:[“Ken”, “John”], “Java”:[“John”, “Sally”, “Ken”], “OOD”:[“Ken”], “Basic”:[],“C#”:[]]

Test Case: Record a book return by a borrower
Library stock: [“Groovy”:[“Ken”, “John”], “Java”:[“John”, “Ken”], “OOD”:[“Ken”], “Basic”:[], “C#”:[]]

Test Case: Display the number of books on loan to a borrower
Number of books on loan to Ken: 3

Test Case: Display the number of borrowers of a book
Number of borrowers of Java: 2

11.2 iteration 2 : implementation of a text-based user interface 119

At this point, we consider the first iteration to be complete. Full listings of the
script are available on the book website.

1 1 .2 iteration 2 : implementation
of a text-based user interface

Having demonstrated that the library application executes as expected, we now
turn our attention to how a user might interact with it. Clearly, there are many
possibilities. However, we choose the simplest: a text-based command line inter-
face. In later chapters, we consider more elaborate alternatives.

For this iteration, we are required to present the user with a text-based
menu of the options available. Having selected an option, it is actioned and the
menu presented again so that another option can be selected and actioned. This
continues until the user selects the Quit option.

We can use the Groovy flow of control constructs, discussed in Chapter 8,
to good effect. For example, we have a while loop to control the repeated pres-
entation of the menu and an if...else statement to select and action an
option.

We can also introduce new methods as necessary. For example, we must
elicit a book title, a borrower name, and a menu option from the user. These
requirements are coded as the methods readBookTitle, readBorrowerName, and
readMenuSelection, respectively. The partial listing of Library 02 illustrates.
Complete listings are available on the book website.

Barclay chap11.qxd 02/01/1904 9:55 PM Page 119

import console.*

// methods as shown previously
// ...

def readBookTitle(){
print(‘\tEnter book title: ‘)
return Console.readLine()

}

def readBorrowerName(){
print(‘\tEnter borrower name: ‘)
return Console.readLine()

}

def readMenuSelection(){
println()
println(‘0: Quit’)
println(‘1: Add new book’)
println(‘2: Remove book’)
println(‘3: Lend a book’)
println(‘4: Return a book’)
println(‘5: Display loan stock’)
println(‘6: Display number of books on loan to a borrower’)
println(‘7: Display number of borrowers of a book’)

print(‘\n\tEnter choice: ‘)
return Console.readLine()

}
def library = [‘Groovy’ : [‘Ken’, ‘John’], ‘OOD’ : [‘Ken’], ‘Java’ : [‘John’, ‘Sally’], ‘UML’ : [‘Sally’],
‘Basic’ : []]

def choice = readMenuSelection()

while(choice != ‘0’){

if(choice == ‘1’)
addBook(library, readBookTitle())

else if(choice == ‘2’)
removeBook(library, readBookTitle())

120 C H A P T E R 11 Case Study: A Library Application (Methods, Closures)

LIBRARY 02
A Library
application—
additional methods
and control
structures

Barclay chap11.qxd 02/01/1904 9:55 PM Page 120

else if(choice == ‘3’)
lendBook(library, readBookTitle(), readBorrowerName())

else if(choice == ‘4’)
returnBook(library, readBookTitle(), readBorrowerName())

else if(choice == ‘5’)
displayLoanStock(library)

else if(choice == ‘6’) {
def count = getNumberBorrowedBooks(library, readBorrowerName())
println “\nNumber of books borrowed: ${count}\n”

} else if(choice == ‘7’) {
def count = getNumberBorrowers(library, readBookTitle())
println “\nNumber of borrowers: ${count}\n”

} else
println(‘\nUnknown selection\n’)

// next selection
choice = readMenuSelection()

}

println(‘\nSystem closing\n’)

Notice that the library initialization and supporting methods are unchanged
from the previous iteration. However, we have no need for the test-case code.
To test Library 02, we might select each menu option and then display the con-
tents of the library to check the result. A typical interaction, with user input
shown italicized and emboldened, is:

0: Quit
1: Add new book
2: Remove book
3: Lend a book
4: Return a book
5: Display loan stock
6: Display number of books on loan to a borrower
7: Display number of borrowers of a book

Enter choice: 3
Enter book title: Java
Enter borrower name: Ken

0: Quit
1: Add new book
2: Remove book
3: Lend a book
4: Return a book
5: Display loan stock

11.2 iteration 2 : implementation of a text-based user interface 121

Barclay chap11.qxd 02/01/1904 9:55 PM Page 121

6: Display number of books on loan to a borrower
7: Display number of borrowers of a book

Enter choice: 5
Library stock: [“Groovy”:[“Ken”, “John”], “UML”:[“Sally”], “Java”:[“John”, “Sally”, “Ken”], “OOD”:[“Ken”],
“Basic”:[]]

◆

122 C H A P T E R 11 Case Study: A Library Application (Methods, Closures)

Since we have the expected outputs, at this point we consider this second itera-
tion completed.

11.3 iteration 3 : implementation
with closures

There are no new functional requirements for this iteration. Our aim is to
recode the second iteration so that it is easier to understand and maintain. One
potential problem with Library 02 is that the code, which controls its execution,
that is, the if...else statement, may become increasingly difficult to under-
stand as more and more options are added. Although we might replace it with
a switch statement, this does not really help very much since all that we have
done is to change the syntax slightly.

The closure, discussed in Chapter 9, is a particularly powerful feature of the
Groovy language. It represents a block of executable code that is also an Object.
Since it is an Object, it can be a value in a Map. If its key is a user choice, then
we can locate and execute the associated closure without the need for complex
control code.

For example, we might have a parameter-less closure, doAddBook, to execute
the method addBook from Iteration 2.

def doAddBook = { addBook(library, readBookTitle()) }

If we have a similar closure for each possible action, then we can have a Map with
each user choice as its key and the corresponding closure (actions) as its value.

def menu = [‘1’ : doAddBook,
‘2’ : doRemoveBook,
‘3’ : doLendBook,
‘4’ : doReturnBook,
‘5’ : doDisplayLoanStock,
‘6’ : doDisplayNumberBooksOnLoanToBorrower,
‘7’ : doDisplayNumberBorrowersOfBook
]

Barclay chap11.qxd 02/01/1904 9:55 PM Page 122

Such a structure is often called a lookup table or dispatch table. It is very useful
because we can replace complex control code with a table lookup as in:

def choice = readMenuSelection()

while(choice != ‘0’){
menu[choice].call()
choice = readMenuSelection()

}

The partial listing of Library 03 combines these ideas. As with the previous
examples, complete listings are available on the book website.

// methods and initialization as shown previously
// ...

def doAddBook = { addBook(library, readBookTitle()) }

def doRemoveBook = { removeBook(library, readBookTitle()) }

def doLendBook = { lendBook(library, readBookTitle(), readBorrowerName()) }

def doReturnBook = { returnBook(library, readBookTitle(), readBorrowerName()) }

def doDisplayLoanStock = { displayLoanStock(library) }

def doDisplayNumberBooksOnLoanToBorrower = {
def count = getNumberBorrowedBooks(library, readBorrowerName())
println “\nNumber of books borrowed: ${count}\n”

}

def doDisplayNumberBorrowersOfBook = {
def count = getNumberBorrowers(library, readBookTitle())
println “\nNumber of borrowers: ${count}\n”

}

def menu = [‘1’ : doAddBook,
‘2’ : doRemoveBook,
‘3’ : doLendBook,
‘4’ : doReturnBook,
‘5’ : doDisplayLoanStock,
‘6’ : doDisplayNumberBooksOnLoanToBorrower,
‘7’ : doDisplayNumberBorrowersOfBook
]

11.3 iteration 3 : implementation with closures 123

LIBRARY 03
A Library
application—a
recoded version

Barclay chap11.qxd 02/01/1904 9:55 PM Page 123

def choice = readMenuSelection()
while(choice != ‘0’){

menu[choice].call()
choice = readMenuSelection()

}

println(‘\nSystem closing\n’)

◆

As expected, its execution is the same as Library 02. However, by recoding with clo-
sures, we have made it much easier to add extra functionality. For example, we may
be required to add an option to display an alphabetic list of the borrowers of a par-
ticular book. All we have to do is to develop a closure that calls a suitable method:

// method
def getBorrowers(library, bookTitle) {

return library[bookTitle]
}

// closure
def doDisplayBorrowersOfBook = {

def borrowerNames = getBorrowers(library, readBookTitle())
println “\nBorrowers: ${borrowerNames.sort()}\n”

}

The closure is then added to the Map with a suitable key:

menu[‘8’] = doDisplayBorrowersOfBook

and the method readMenuSelection updated:

def readMenuSelection(){

// As shown previously
// ...

println(‘8: Display borrowers of a book’)
// ...

}

The important point to realize is that the rest of the code is unchanged. In par-
ticular, there is no need to make code that was already complex even more com-
plex. At this point, we consider this third iteration completed.

124 C H A P T E R 11 Case Study: A Library Application (Methods, Closures)

Barclay chap11.qxd 02/01/1904 9:55 PM Page 124

11.4 exercises

1. Section 3.1 of Chapter 4 discussed the Groovy multiline text string.
Recode the method readMenuSelection from Library 02 to make use of
it. What are its advantages and disadvantages?

2. Amend the previous exercise so that it supports an option to display an
alphabetical list of the borrowers of a particular book.

3. The JDK has the class HashSet that, like the ArrayList, can be initialized
with a List. However, it does not hold duplicate elements. Use a HashSet
to amend the previous exercise so that it supports an option to display an
alphabetical list of all the books currently on loan. It should not contain
duplicates.

4. Amend the previous exercise so that it supports an option to display an
alphabetical list of all of the books in the library.

5. In Iteration 3, each closure called a method. Recast Library 03 so that
each closure calls to a nested closure (see Section 9.3) which replaces the
method. What are the advantages of this approach?

The following exercises are intended to be miniprojects similar to the one
discussed in this chapter.

6. Assume two Lists exist that represent the names of staff involved in two
separate project developments. A staff member may be involved in one or
both projects. Find those staff involved in both projects. Find those
involved in only one project. Develop methods to support such an appli-
cation. Develop an additional method to find those staff involved in the
first project but not in the second.

7. Consider the clock time program given in Example 05 of Chapter 7. As
this program executes, the variables hours, minutes, seconds, and
totalSeconds are created, in that order. After execution of the first two
statements, the executing Groovy program would have created objects for
the variables hours and minutes.

The runtime environment for Groovy will maintain these objects as they
are created. We might model this environment with a Map of the variable
name and its value. Hence, after execution of the first two statements, we
might have:

environment = [‘hours’ : 1, ‘minutes’ : 2]

11.4 exercises 125

Barclay chap11.qxd 02/01/1904 9:55 PM Page 125

Provide methods add, getVariables, and getValue that:

(a) add a new variable and its value to the environment

(b) find all the variables in the current environment

(c) find the value for a named variable

8. Consider the word concordance program given in Example 12 of
Appendix G. The runtime environment for this program needs to prop-
erly manage the block structure. The program executes by first declaring
the doc variable. It then calls the concordance method. The first two lines
of this method introduce the variables lineNumber and concord. These
local variables only exist in the runtime environment while the concor-
dance method is executing. Upon return from that method, these vari-
ables are removed from the environment. Continuing, the concord
variable is added to the environment.

Model this application as a List in which each entry is a Map, as described in
the preceding exercise. When we enter a new block, a new Map is appended
to the List, and when we exit the block, that Map is removed. As variables
are introduced into the environment, they are recorded in the most recent
Map from the List.

Provide the following methods:

(a) addBlock: that introduces a new block in the environment

(b) removeBlock: that mimics exiting a block

(c) add: that introduces a new variable into the environment

(d) lookup: that obtains the value for a given variable

126 C H A P T E R 11 Case Study: A Library Application (Methods, Closures)

Barclay chap11.qxd 02/01/1904 9:55 PM Page 126

127

C H A P T E R 12
classes

A Groovy class is a collection of data and the methods that operate on that data.
Together, the data and methods of a class are used to represent some real world
object from the problem domain. For example, if we are developing a banking
application, we might expect to find classes to represent account objects, bank
objects, and perhaps customer objects. Similarly, in a university student record
system, we might require classes to represent student objects, course and mod-
ule objects, as well as objects that represent programs of study.

Observe how these real-world objects may have a physical presence or may
represent some well-understood conceptual entity in the application. In our
examples, a student will most definitely exist, while a program of study has no
physical existence.

12.1 classes

A class in Groovy is used to represent some abstraction in the problem domain.
As has been discussed, a class declares the state (data) and the behavior of
objects defined by that class. Hence, a Groovy class describes both the
instance fields and methods for that class. The properties specify the state
information maintained by objects of the class. The methods define the behav-
iors we can expect from the objects.

Here is an example of a simple Groovy script that defines a class that
describes a simple bank account together with some code to create an instance
and display its state.

Barclay chap12.qxd 02/01/1904 9:56 PM Page 127

class Account {
def number // account number
def balance // current balance

}

// create a new Account instance
def acc = new Account(number : ‘ABC123’, balance : 1200)

// display its state values
println “Account ${acc.number} has balance ${acc.balance}”

The output from the script is:

Account ABC123 has balance 1200

◆

The Groovy keyword class is followed by the name of the class, namely,
Account. The class declares two public properties and no methods. An instance
of this class is created using the new operator, as in:

def acc = new Account(number : ‘ABC123’, balance : 1200)

The new keyword is followed by the name of the class of object we are creating.
The remainder comprises a list of named parameters specifying how the proper-
ties of the instance are to be initialized. Here, the Account object, referenced as
acc, has an account number of ABC123 and a balance of 1200. Observe how
the properties of the instance are referenced in the print statement. The expres-
sion acc.number is used to access the number property of the Account object acc.

As simple as this class may appear, there is a great deal going on under the
hood. First, the two properties introduced in the Account class are said to have
public access. This means they can be used in any other part of the code to refer
to the individual parts of the state of an instance of the Account class. This is
how the print statement is able to access the state of the acc object.

Second, this simple example demonstrates how Groovy seeks to unify
instance fields and methods. Properties remove the distinction between an
instance field (sometimes also referred to as an attribute) and a method. From a
view external to the Groovy class, a property is like both the instance field and
its getter/setter methods. In effect, the usage of a property reference such as
acc.number is implemented by acc.getNumber().

The class is a template for creating instances of objects defined by that class.
In the next example, we create two Account objects and print their values.

128 C H A P T E R 12 Classes

EXAMPLE 01
A simple Groovy
class

Barclay chap12.qxd 02/01/1904 9:56 PM Page 128

12.1 classes 129

class Account {
def number // account number
def balance // current balance

}

// create two instances
def acc1 = new Account(number : ‘ABC123’, balance : 1200)
def acc2 = new Account(number : ‘XYZ888’, balance : 400)

// report on both
println “Account ${acc1.number} has balance ${acc1.balance}”
println “Account ${acc2.number} has balance ${acc2.balance}”

When we run the program, we get the output:

Account ABC123 has balance 1200
Account XYZ888 has balance 400

◆

We noted that the Groovy class corresponds to the equivalent Java class. This
means that the getter and setter methods are implicitly part of the Groovy
class. Hence, we can mix and match their usage, as shown in the next exam-
ple.

class Account {
def number // account number
def balance // current balance

}

// create two instances
def acc1 = new Account(number : ‘ABC123’, balance : 1200)
def acc2 = new Account(number : ‘XYZ888’, balance : 400)

// access the state using properties
println “Account ${acc1.number} has balance ${acc1.balance}”

// access the state using getters
println “Account ${acc2.getNumber()} has balance ${acc2.getBalance()}”

// modify the state using a property
acc1.balance = 200
println “Account ${acc1.getNumber()} has balance ${acc1.getBalance()}”

EXAMPLE 02
Two object
instances

EXAMPLE 03
Using the implicit
getter and setter
methods

Barclay chap12.qxd 02/01/1904 9:56 PM Page 129

// modify the state using a setter
acc2.setBalance(600)
println “Account ${acc2.number} has balance ${acc2.balance}”

The output is:

Account ABC123 has balance 1200
Account XYZ888 has balance 400
Account ABC123 has balance 200
Account XYZ888 has balance 600

◆

More usually, a class also has some methods to define the distinct behaviors of
instances. In our simple Account class, we might expect methods to support
making a deposit and making a withdrawal. We extend our Account class with
the methods credit and debit for this purpose. Additionally, we include a
method to display the state of an Account object. We show this in Example 04.

class Account {
def number // account number
def balance // current balance

def credit(amount) {
balance += amount

}

def debit(amount) { // only if there are sufficient funds
if(balance >= amount)

balance = amount
}

def display() {
println “Account: ${number} with balance: ${balance}”

}

}

// create a new instance
def acc = new Account(number : ‘ABC123’, balance : 1200)
acc.display()

// credit transaction
acc.credit(200) // balance now 1400
acc.display()

130 C H A P T E R 12 Classes

EXAMPLE 04
class methods

Barclay chap12.qxd 02/01/1904 9:56 PM Page 130

// other transactions
acc.debit(900) // balance now 500
acc.debit(700) // balance remains unchanged at 500
acc.display()

The output is:

Account: ABC123 with balance: 1200
Account: ABC123 with balance: 1400
Account: ABC123 with balance: 500

◆

As an Account is an Object, instances of the Account class can be used as the ele-
ments of a List. In the next example, we create three instances of the Account
class, place them in a List, and then display each. Note how this version of the
Account class has replaced the display method with one entitled toString. This
replacement method returns the state information as a String value.

class Account {
def number // account number
def balance // current balance

def credit(amount) {
balance += amount

}

def debit(amount) { // only if there are sufficient funds
if(balance >= amount)

balance –= amount
}

def toString() { // see also next example
return “Account: ${number} with balance: ${balance}”

}
}

// create some instances
def acc1 = new Account(number : ‘ABC123’, balance : 1200)
def acc2 = new Account(number : ‘PQR456’, balance : 200)
def acc3 = new Account(number : ‘XYZ789’, balance : 123)

// populate a list with the instances
def accounts = [acc1, acc2, acc3]

// now display each
accounts.each { acc ->

println acc.toString()
}

12.1 classes 131

EXAMPLE 05
lists of accounts

Barclay chap12.qxd 02/01/1904 9:56 PM Page 131

The output is:

Account: ABC123 with balance: 1200
Account: PQR456 with balance: 200
Account: XYZ789 with balance: 123

◆

We define the toString method to give us a textual representation of an Account
object and then use it in the expression acc.toString() as part of the print
statement. To avoid an explicit call to toString, we record that we are redefin-
ing (see Chapter 14) toString. This requires that we repeat the full signature of
the toString method and show that it returns a String value. Another version
of this is shown next.

class Account {
def number // account number
def balance // current balance

def credit(amount) {
balance += amount

}

def debit(amount) { // only if there are sufficient funds
if(balance >= amount)

balance –= amount
}

String toString() { // redefinition
return “Account: ${number} with balance: ${balance}”

}
}

// populate a list with the instances
def accounts = [new Account(number : ‘ABC123’, balance : 1200),

new Account(number : ‘PQR456’, balance : 200),
new Account(number : ‘XYZ789’, balance : 123)]

// now display each
accounts.each { acc ->

println acc // automatically call toString
}

◆

132 C H A P T E R 12 Classes

EXAMPLE 06
Redefining method
toString

Barclay chap12.qxd 02/01/1904 9:56 PM Page 132

The output from this example is the same as that shown in the last example.
The Java declaration for the Account class would normally include a con-

structor method for the initialization of objects of this class. We have not had to
do this with our classes, choosing instead to use named parameters with the new
operator. We can, of course, have constructor methods in our Groovy classes.
Where we explicitly provide one, we would normally expect a class declaration
to include a parameterized constructor for the proper initialization of the class
properties. A constructor is distinguished as a method with the same name as
the class. This is shown in Example 07.

12.1 classes 133

EXAMPLE 07
A constructor
method

class Account {

def Account(number, balance) { // constructor method
this.number = number
this.balance = balance

}

def credit(amount) {
balance += amount

}

def debit(amount) { // only if there are sufficient funds
if(balance >= amount)

balance = amount
}

String toString() { // redefinition
return “Account: ${number} with balance: ${balance}”

}

def number // account number
def balance // current balance

}

// populate a list with the instances
def accounts = [new Account(‘ABC123’, 1200),

new Account(‘PQR456’, 200),
new Account(‘XYZ789’, 123)]

// now display each
accounts.each { acc ->

println acc // automatically call toString
}

//def acc = new Account(number : ‘ABC123’, balance : 1200) // No matching constructor

◆

Barclay chap12.qxd 02/01/1904 9:56 PM Page 133

Observe how we now create instances of this class. We invoke the constructor,
passing two actual parameters for the account number and an initial balance.
This time, they are presented using positional parameters. Further, note how the
constructor method is defined. The formal parameters have been given the same
name as the properties. To disambiguate this in the method body, we have used
the this keyword to prefix the property. Hence, the statement this.number =
number is interpreted as “assign to the number property of this object, the value
of (the parameter) number.”

Note also the final line of commented code. When a class includes a user-
defined constructor, the auto-generated default constructor is not produced.
The final statement tries to create a new Account object in the manner to which
we have become accustomed. However, since this requires the default construc-
tor, an error is reported stating that no matching constructor was available (see
following text).

A final comment to make on this version of the Account class is that the
properties have been shown at the end of the class declaration. This is perfectly
acceptable in Groovy, even where the methods reference the properties before
they are introduced. Our reason for doing this recognizes that a client program
developed using such a class is more interested in the services supported by the
class than its implementation.

We have preferred to use the named parameter scheme when creating an
instance with the new operator. It is worth considering how they operate. Class
properties result in auto-generated getter and setter methods. Further, where no
constructor is declared, then the compiler will create the default constructor:

Account() {
}

Object creation with:

def acc = new Account(number : ‘ABC123’, balance : 1200)

is replaced with the following equivalent code (see Appendix B):

def acc = new Account() // default constructor
acc.setNumber(‘ABC123’) // implicit setters
acc.setBalance(1200)

134 C H A P T E R 12 Classes

Barclay chap12.qxd 02/01/1904 9:56 PM Page 134

12.2 composition

Examples 05 and 06 have shown how Account objects can be elements in a col-
lection. We might use this technique to model a banking application in which
accounts are opened with a bank and transactions are made on these accounts
through the bank. The architecture for this application is described by a one-to-
many relationship: one bank is associated with many accounts. This relationship
is readily handled by a List or Map collection. Since some of the methods of the
Bank class will require us to identify a particular account according to its account
number, we choose to use a Map with the account number as the key and the
Account object as the value. A sample Map with two Accounts is:

[‘ABC123’ : new Account(‘ABC123’, 1200), ‘DEF456’ : new Account(‘DEF456’, 1000)]

where we use the constructor syntax new Account(‘ABC123’, 1200) to create a
new Account object.

This problem is modeled with the class diagram presented in Fig. 12.1.
A composite aggregation relationship is defined between the Bank and Account
class. The multiplicity indicator * shows that a single Bank object is related to
none or more Account objects. Further, the role accounts is how the Bank refers
to these many Accounts. This role name is realized as a property of the Bank class.

In our application, we wish to be able to open new accounts with the bank,
make credit and debit transactions on particular accounts, obtain the balance
for a particular account, and obtain the total assets for the bank (the sum of the
balances for every opened account). The solution for this application is given in
Example 08. Note how two classes are defined here. Pay particular attention to
the Bank class. It initializes the accounts property to be an empty Map. Method
openAccount populates this Map with an account number for the key and the
Account object for its associated value. Methods findAccount and getTotalAssets
use closures to good effect to implement their functionality.

class Account {

def credit(amount) {
balance += amount

}

12.2 composition 135

EXAMPLE 08
Banking example

- accounts

*
Bankc Accountc

FIGURE 12.1 Class diagram.

Barclay chap12.qxd 02/01/1904 9:56 PM Page 135

def debit(amount) { // only if there are sufficient funds
if(balance >= amount)

balance –= amount
}

String toString() { // redefinition
return “Account: ${number} with balance: ${balance}”

}

// -----properties -----------------

def number // account number
def balance // current balance

}

class Bank {

def openAccount(number, balance) {
def acc = new Account(number : number, balance : balance)
accounts[number] = acc

}

def creditAccount(number, amount) {
def acc = this.findAccount(number)
if(acc != null)

acc.credit(amount)
}

def debitAccount(number, amount) {
def acc = this.findAccount(number)
if(acc != null)

acc.debit(amount)
}

def getAccountBalance(number) {
def acc = this.findAccount(number)
return (acc == null) ? null : acc.balance

}

def getTotalAssets() {
def total = 0
accounts.each { number, account -> total += account.balance }
return total

}

def findAccount(number) {
def acc = accounts.find { entry -> entry.key == number }
return (acc == null) ? null : acc.value

}

136 C H A P T E R 12 Classes

Barclay chap12.qxd 02/01/1904 9:56 PM Page 136

// -----properties -----------------

def name // name of bank
def accounts = [:] // accounts opened with the bank

}

// open new bank
def bk = new Bank(name : ‘Community’)

// Open new accounts
bk.openAccount(‘ABC123’, 1200)
bk.openAccount(‘DEF456’, 1000)
bk.openAccount(‘GHI789’, 2000)

// Perform transactions on a particular account
bk.creditAccount(‘ABC123’, 200) // balance now 1400
bk.debitAccount(‘ABC123’, 900) // balance now 500
bk.debitAccount(‘ABC123’, 700) // balance remains unchanged at 500

// Display details of this account
println “Balance for account ABC123 is: ${bk.getAccountBalance(‘ABC123’)}”

// Calculate total bank assets
println “Total assets: ${bk.getTotalAssets()}”

Running the program produces:

Balance for account ABC123 is: 500
Total assets: 3500

◆

12.3 exercises 137

12.3 exercises

1. Develop a class to represent an Employee, each having a staff number, a
name, and a salary. Prepare an application to create a list of employees
and to determine the total wage bill for these employees.

2. Develop a class to represent a Point in a two-dimensional space with an x
and a y property. Include in the class the method moveBy, which moves
the point by x and y displacements given as method parameters.

Barclay chap12.qxd 02/01/1904 9:56 PM Page 137

3. Build on the Point class developed in the last exercise to develop the class
Line, defined by its start and end points. Include in the class the method
moveBy, to displace the line by some given amount. Also, include the
methods isHorizontal and isVertical to determine the nature of the
line.

4. Build on the Point class developed earlier to develop the class Rectangle,
defined by the position of its upper left corner, width, and height.
Include in the class the methods moveBy, getArea, and getPerimeter.
Method moveBy displaces the rectangle by a given amount. Methods
getArea and getPerimeter calculate the area and the perimeter, respec-
tively, of the rectangle.

5. Use the Employee class from the first exercise and develop a Company class
with any number of employees. Introduce into the Company class methods
hire(employee), display(), and getTotalSalaries(). Method hire intro-
duces the new employee into the organization. Method display produces
a list of each employee, while method getTotalSalaries computes the
total wages bill for the company.

6. Further develop the last exercise so that the Company has any number of
Departments and a Department has any number of Employees. Class
Department has a name property, and is to have the methods add, display,
and getTotalSalaries. Method add introduces a new employee into that
division. Methods display and getTotalSalaries display all the employ-
ees in a department, and obtain the total wages bill for a department.
Class Company should now have the methods open(department),
hire(deptName, employee), display(), and getTotalSalaries().

7. A news agent maintains a list of customers, including their names. For
each customer, the news agent has a list of newspapers to be delivered to
their home. Develop a system to list each newspaper and the quantity
required.

138 C H A P T E R 12 Classes

Barclay chap12.qxd 02/01/1904 9:56 PM Page 138

139

C H A P T E R 13
case study: a l ibrary
application ⁽objects ⁾

The library application first appeared in Chapter 6. In that chapter, we showed
how combining Lists and Maps could produce complex data structures that can
be used to manage the bookkeeping required by a library. The data maintained
in these collections were simple strings. We revisited the application again in
Chapter 11 and this time we included some procedural code that enhanced the
capabilities of our system. For example, methods were provided to find those
books that had been issued to a borrower and to record loans to a borrower.

This case study is applied to the same problem domain using the object-
oriented concepts introduced in Chapter 12. Rather than have simple strings for
the borrower and the book title, we can now use objects to represent the library,
its borrowers, and the books. Since we use objects, they have more interesting
state information and behaviors. As in the two earlier versions of this applica-
tion, we use containers to model the complex relationships established between
objects.

13.1 specification

We assume a sufficient familiarity with the operation of a library to understand
the following description:

The library has a name, holds a number of books, each of which has a title, author,
and unique catalog number. There are registered borrowers, each with a unique
membership number and a name. A borrower may borrow a book and return it.

Barclay chap13.qxd 02/01/1904 9:57 PM Page 139

However, each book transaction must be recorded by a librarian. She is also expected
to register a new borrower, add a new book, be able to display the entire loan stock,
display those books available for loan, display those already out on loan, and display
the details of each registered borrower.

These requirements are captured in the use cases:

● Add a new book to the loan stock

● Record the loan and return of a book

● Display the details of the current loan stock

● Register a new borrower

● Display details of the borrowers

The library system we are asked to develop is relatively nontrivial and so it mer-
its developing it iteratively. For the first two iterations, we aim to demonstrate
that our model is a good reflection of the problem domain. Clearly, if it is not,
then the rest of the development effort is severely jeopardized. In the third iter-
ation, we introduce a simple text-based user interface into the application. To
help minimize the danger of “hacking,” each iteration has stated aims that we
demonstrate have been achieved.

13.2 iteration 1: an initial model

The specification mentions books that are borrowed from the library. This sug-
gests a class diagram similar to that we met in Chapter 12 when we were con-
cerned with a bank and its many accounts. The initial class diagram is given in
Fig. 13.1. Class Book represents a book that may be borrowed from the library.
It is a concrete class and carries the properties and behaviors common to all bor-
rowed books, namely, the book catalog number, title, and name of the author.
The class Library has a composite aggregation relationship with the Book class
that represents its loan stock. This is implemented as a Map with the book cata-
log number as the key and the Book object as the value.

140 C H A P T E R 13 Case Study: A Library Application (Objects)

- loanStock*

Bookc

Libraryc

FIGURE 13.1 Initial class diagram.

Barclay chap13.qxd 02/01/1904 9:57 PM Page 140

13.2 iteration 1 : an initial model 141

In the banking example of Chapter 12, we demonstrated that the initial
functionality of the classes was achieved by creating a number of objects, con-
figuring the objects into the application architecture, and invoking various
methods to ensure the integrity of our work. Here, we do likewise. We create a
single Library object and a number of Book objects. We then add the books to
the library’s loan stock. Finally, we request the library to display its full stock.
All of this is shown in Library 01.

class Book {

String toString() { // redefinition
return “Book: ${catalogNumber}: ${title} by: ${author}”

}

// ------properties-----------------

def catalogNumber
def title
def author

}

class Library {

def addBook(bk) {
loanStock[bk.catalogNumber] = bk

}

def displayStock() {
println “Library: ${name}”
println ‘================’

loanStock.each { catalogNumber, book -> println” ${book}” }
}

// ------properties-----------------

def name
def loanStock = [:]

}

// Create a library object
def lib = new Library(name : ‘Dunning’)

// Create some books...
def bk1 = new Book(catalogNumber : ‘111’, title : ‘Groovy’, author : ‘Ken’)
def bk2 = new Book(catalogNumber : ‘222’, title : ‘OOD’, author : ‘Ken’)
def bk3 = new Book(catalogNumber : ‘333’, title : ‘UML’, author : ‘John’)

LIBRARY 01
Initial object
configuration

Barclay chap13.qxd 02/01/1904 9:57 PM Page 141

// ...add them to the loan stock
lib.addBook(bk1)
lib.addBook(bk2)
lib.addBook(bk3)

// See stock
lib.displayStock()

Note we have the closure’s two formal parameters (the Map’s key and its associ-
ated value) in:

loanStock.each { catalogNumber, book -> println “ ${book.value}” }

even though we make use of only one. This helps make it clear that loanStock
references a Map, not a List, and so we adopt it as our standard practice.

When we execute this Groovy script, the results are as follows:

Library: Dunning
=============

Book: 111: Groovy by: Ken
Book: 222: OOD by: Ken
Book: 333: UML by: John

◆

The display reveals that the correct architecture is established and that we have
the correct behavior from our two classes. Therefore, we consider this iteration
to be complete.

13.3 iteration 2 : augment
the model

We now need to introduce the notion of registered borrowers into our model.
The specification states that they are identified by a unique membership num-
ber and have a name. The borrowers are permitted to borrow and return books.
We capture this decision with the class diagram in Fig. 13.2. The Borrower
objects are registered with the Library and they maintain a collection of bor-
rowed books.

The realization of Fig. 13.2 involves introducing the Borrower class with
membership number and name as properties. The Borrower class also has

142 C H A P T E R 13 Case Study: A Library Application (Objects)

Barclay chap13.qxd 02/01/1904 9:57 PM Page 142

methods to add and remove a Book from the collection of those borrowed by
the Borrower. Observe how a Book also refers to the Borrower (with the role
name borrower) that has taken that item on loan. If this value is null, then
it indicates that the Book is not on loan. If the value is not null, then the
Borrower object referenced by this value is the Borrower who has the Book on
loan.

The Library class is augmented with a method to register a new Borrower
and a method to display each Borrower with the details of each Book they have
borrowed. The class also includes operations to lend and return a Book. The full
listing is given in Library 02.

class Book {

def attachBorrower(borrower) {
this.borrower = borrower

}

def detachBorrower() {
borrower = null

}

String toString() { // redefinition
return “Book: ${catalogNumber}: ${title} by: ${author}”

}

//------properties-----------------

def catalogNumber
def title
def author
def borrower = null

}

13.3 iteration 2 : augment the model 143

LIBRARY 02
Borrowers

- loanStock
- borrowedBooks- borrower

0..1 *

- borrowers * *

Bookc

Libraryc

Borrowerc

FIGURE 13.2 Introducing borrowers.

Barclay chap13.qxd 02/01/1904 9:57 PM Page 143

class Borrower {

def attachBook(bk) {
borrowedBooks[bk.catalogNumber] = bk
bk.attachBorrower(this)

}

def detachBook(bk) {
borrowedBooks.remove(bk.catalogNumber)
bk.detachBorrower()

}

String toString() {
return “Borrower: ${membershipNumber}; ${name}”

}

// ------properties----------------

def membershipNumber
def name
def borrowedBooks = [:]

}

class Library {

def addBook(bk) {
loanStock[bk.catalogNumber] = bk

}

def displayStock() {
println “\n\nLibrary: ${name}”
println ‘================’

loanStock.each { catalogNumber, book -> println “ ${book}” }
}

def displayBooksAvailableForLoan() {
println “\n\nLibrary: ${name} : Available for loan”
println ‘================’

loanStock.each { catalogNumber, book -> if(book.borrower == null) println “ ${book}” }
}

def displayBooksOnLoan() {
println “\n\nLibrary: ${name} : On loan”
println ‘================’

loanStock.each { catalogNumber, book -> if(book.borrower != null) println “ ${book}” }
}

144 C H A P T E R 13 Case Study: A Library Application (Objects)

Barclay chap13.qxd 02/01/1904 9:57 PM Page 144

def registerBorrower(borrower) {
borrowers[borrower.membershipNumber] = borrower

}

def displayBorrowers() {
println “\n\nLibrary: ${name} : Borrower details”
println ‘================’

borrowers.each { membershipNumber, borrower ->
println borrower
borrower.borrowedBooks.each { catalogNumber, book -> println “ ${book}” }

}
}

def lendBook(catalogNumber, membershipNumber) {
def loanStockEntry = loanStock.find { entry -> entry.key == catalogNumber }
def borrowersEntry = borrowers.find { entry -> entry.key == membershipNumber }
borrowersEntry.value.attachBook(loanStockEntry.value)

}

def returnBook(catalogNumber) {
def loanStockEntry = loanStock.find { entry -> entry.key == catalogNumber }
def bor = loanStockEntry.value.borrower
bor.detachBook(loanStockEntry.value)

}

// -----properties ------------------

def name
def loanStock = [:]
def borrowers = [:]

}

// Create a library object
def lib = new Library(name : ‘Dunning’)

// Create some books...
def bk1 = new Book(catalogNumber : ‘111’, title : ‘Groovy’, author : ‘Ken’)
def bk2 = new Book(catalogNumber : ‘222’, title : ‘OOD’, author : ‘Ken’)
def bk3 = new Book(catalogNumber : ‘333’, title : ‘UML’, author : ‘John’)

// ...add them to the loan stock
lib.addBook(bk1)
lib.addBook(bk2)
lib.addBook(bk3)

// See stock
lib.displayStock()

13.3 iteration 2 : augment the model 145

Barclay chap13.qxd 02/01/1904 9:57 PM Page 145

// Now introduce some borrowers
bo1 = new Borrower(membershipNumber : ‘1234’, name : ‘Jessie’)
bo2 = new Borrower(membershipNumber : ‘5678’, name : ‘Sally’)

lib.registerBorrower(bo1)
lib.registerBorrower(bo2)

// See borrowers
lib.displayBorrowers()

// Finally, make some transactions
lib.displayBooksAvailableForLoan()

lib.lendBook(‘111’, ‘1234’)

lib.displayBooksAvailableForLoan()
lib.displayBooksOnLoan()
lib.displayBorrowers()

lib.returnBook(‘111’)

lib.displayBooksAvailableForLoan()
lib.displayBooksOnLoan()
lib.displayBorrowers()

As with the previous iteration, when we run this script, the results reveal that
the classes behave as expected.

Library: Dunning
================

Book: 111: Groovy by: Ken
Book: 222: OOD by: Ken
Book: 333: UML by: John

Library: Dunning : Borrower details
================

Borrower: 1234; Jessie
Borrower: 5678; Sally

Library: Dunning : Available for loan
================

Book: 111: Groovy by: Ken
Book: 222: OOD by: Ken
Book: 333: UML by: John

146 C H A P T E R 13 Case Study: A Library Application (Objects)

Barclay chap13.qxd 02/01/1904 9:57 PM Page 146

Library: Dunning : Available for loan
================

Book: 222: OOD by: Ken
Book: 333: UML by: John

Library: Dunning : On loan
================

Book: 111: Groovy by: Ken

Library: Dunning : Borrower details
================
Borrower: 1234; Jessie

Book: 111: Groovy by: Ken
Borrower: 5678; Sally

Library: Dunning : Available for loan
================

Book: 111: Groovy by: Ken
Book: 222: OOD by: Ken
Book: 333: UML by: John

Library: Dunning : On loan
================

Library: Dunning : Borrower details
================
Borrower: 1234; Jessie
Borrower: 5678; Sally

◆

13.4 iteration 3 : reinstate
the user interface

The preceding implementation exercised the code by a “hard-wired” set of pro-
grammed instructions. In this final iteration, we give the application a text-
based user interface controlled by a simple menu similar to the one developed
in Iteration 2 of the Chapter 11 case study. Through the menu, we make the
application more flexible since the functionality performed is determined by the
selection made by the user.

The menu is readily implemented with some simple procedural code. The
method readMenuSelection presents the user with the application menu, invites
the user to make a selection, and then returns that value as its result to the caller.

13.4 iteration 3 : reinstate the user interface 147

Barclay chap13.qxd 02/01/1904 9:57 PM Page 147

A while loop ensures that the menu is repeated until the user indicates that the
application is complete. A series of selections with a chain of if..else state-
ments picks off the user choice and implements the required functionality.

Although this user interface is not especially difficult to implement, in the
future, we may need to convert the application to have a graphical user inter-
face or a web interface. If we consider the model developed in the previous iter-
ation, then a design weakness becomes apparent. It is that the Library class has
various display methods that output to the console. Unfortunately, a change of
user interface would necessitate significant changes to it and possibly to other
classes as well.

Our intention is that the classes such as Book, Borrower, and Library should
have no responsibility for input or output. Collectively, we refer to these three
classes as the domain model. This ensures that the domain model classes require
no revisions to accommodate a change of user interface.

A useful approach is to have an object whose responsibility is to interact
with the domain model and also to be responsible for input and output. For this
reason, we introduce an Action class with a set of methods corresponding to
each use case of the application. The relation of the Action class with the
domain model classes is shown in Fig. 13.3.

The final listing is given in Library 03. The main application code handles
the presentation of the menu and the selection made by the user. The user
choice is then routed to one of the Action class methods. For example, the
method displayStock in the class Action produces all the output from data
obtained from the domain model Library class. Equally, the method
registerBorrower from the class Action asks the user for the borrower details,
constructs a Borrower object, and then registers that Borrower with the Library.

148 C H A P T E R 13 Case Study: A Library Application (Objects)

0..1 - library

- loanStock
- borrowedBooks- borrower

0..1 *

- borrowers * *

Bookc

Actionc

Libraryc

Borrowerc

FIGURE 13.3 Incorporating the Action class.

Barclay chap13.qxd 02/01/1904 9:57 PM Page 148

import console.*

// The Book and Borrower classes are unchanged from the previous iteration

class Library {

def addBook(bk) {
loanStock[bk.catalogNumber] = bk

}

def registerBorrower(borrower) {
borrowers[borrower.membershipNumber] = borrower

}

def lendBook(catalogNumber, membershipNumber) {
def loanStockEntry = loanStock.find { entry -> entry.key == catalogNumber }
def borrowersEntry = borrowers.find { entry -> entry.key == membershipNumber }
borrowersEntry.value. attachBook(loanStockEntry.value)

}

def returnBook(catalogNumber) {
def loanStockEntry = loanStock.find { entry -> entry.key == catalogNumber }
def bor = loanStockEntry.value.borrower
bor.detachBook(loanStockEntry.value)

}
// -----properties -------------------

def name
def loanStock = [:]
def borrowers = [:]

}

class Action {

def addBook() {
print(‘\nEnter book catalog number: ‘)
def catalogNumber = Console.readLine()
print(‘Enter book title: ‘)
def title = Console.readLine()
print(‘Enter book author: ‘)
def author = Console.readLine()

def bk = new Book(catalogNumber : catalogNumber, title : title, author : author)

library.addBook(bk)
}

13.4 iteration 3 : reinstate the user interface 149

LIBRARY 03
Text-based menu

Barclay chap13.qxd 02/01/1904 9:57 PM Page 149

def displayStock() {
println “\n\nLibrary: ${library.name}”
println ‘================’

library.loanStock.each { catalogNumber, book -> println “ ${book}” }
}

def displayBooksAvailableForLoan() {
println “\n\nLibrary: ${library.name} : Available for loan”
println ‘================’

library.loanStock.each { catalogNumber, book -> if(book.borrower == null) println “ ${book}” }
}

def displayBooksOnLoan() {
println “\n\nLibrary: ${library.name} : On loan”
println ‘================’

library.loanStock.each { catalogNumber, book -> if(book.borrower != null) println “ ${book}” }
}

def registerBorrower() {
print(‘\nEnter borrower membership number: ‘)
def membershipNumber = Console.readLine()
print(‘Enter borrower name: ‘)
def name = Console.readLine()

def bor = new Borrower(membershipNumber : membershipNumber, name : name)

library.registerBorrower(bor)
}

def displayBorrowers() {
println “\n\nLibrary: ${library.name} : Borrower details”
println ‘================’

library.borrowers.each { membershipNumber, borrower ->
println borrower
borrower.borrowedBooks.each { catalogNumber, book -> println “ ${book}” }

}
}

def lendBook() {
print(‘\nEnter book catalog number: ‘)
def catalogNumber = Console.readLine()
print(‘Enter borrower membership number: ‘)
def membershipNumber = Console.readLine()

150 C H A P T E R 13 Case Study: A Library Application (Objects)

Barclay chap13.qxd 02/01/1904 9:57 PM Page 150

library.lendBook(catalogNumber, membershipNumber)
}

def returnBook() {
print(‘\nEnter book catalog number: ‘)
def catalogNumber = Console.readLine()

library.returnBook(catalogNumber)
}

// -----properties -----------------

def library
}

def readMenuSelection() {
println()
println(‘0: Quit’)
println(‘1: Add new book’)
println(‘2: Display stock’)
println(‘3: Display books available for loan’)
println(‘4: Display books on loan’)
println(‘5: Register new borrower’)
println(‘6: Display borrowers’)
println(‘7: Lend one book’)
println(‘8: Return one book’)

print(‘\n\tEnter choice>>> ‘)
return Console.readString()

}

// make the Action object
def action = new Action(library : new Library(name : ‘Dunning’))

// make first selection
def choice = readMenuSelection()
while(choice != ‘0’) {

if(choice == ‘1’) { // Add new book
action.addBook()

} else if(choice == ‘2’) { // Display stock
action.displayStock()

} else if(choice == ‘3’) { // Display books available for loan
action.displayBooksAvailableForLoan()

} else if(choice == ‘4’) { // Display books on loan
action.displayBooksOnLoan()

} else if(choice == ‘5’) { // Register new borrower

13.4 iteration 3 : reinstate the user interface 151

Barclay chap13.qxd 02/01/1904 9:57 PM Page 151

action.registerBorrower()
} else if(choice == ‘6’) { // Display borrowers

action.displayBorrowers()
} else if(choice == ‘7’) { // Lend one book

action.lendBook()
} else if(choice == ‘8’) { // Return one book

action.returnBook()
} else {

println(“Unknown selection”)
}

// next selection
choice = readMenuSelection()

}
println(‘System closing’)

Of course, we should test that we have the same system functionality as before. This
is easily accomplished by making menu choices that correspond to the “hard-
wired” instructions of the previous iteration and then comparing the outputs. For
example, with user input shown italicized and emboldened, we might have:

0: Quit
1: Add new book
2: Display stock
3: Display books available for loan
4: Display books on loan
5: Register new borrower
6: Display borrowers
7: Lend one book
8: Return one book

Enter choice>>> 1

Enter book catalog number: 111
Enter book title: Groovy
Enter book author: Ken

// ...
// Present the menu to the user

Enter choice>>> 2

Library: Dunning
================

Book: 333: UML by: John
Book: 111: Groovy by: Ken
Book: 222: OOD by: Ken

152 C H A P T E R 13 Case Study: A Library Application (Objects)

Barclay chap13.qxd 02/01/1904 9:57 PM Page 152

// ...
// Present the menu to the user

Enter choice>>> 6

Library: Dunning : Borrower details
================
Borrower: 1234; Jessie

Book: 111: Groovy by: Ken
Borrower: 5678; Sally

// ...
// Present the menu to the user

Enter choice>>> 0

System closing

◆

Having established that we have the same outcomes, we consider this iteration
complete.

13.5 exercises

1. In Iteration 1 of this case study (listing Library 01), the Library adds a
new Book to its stock with the method addBook(bk), where the single
parameter bk represents a Book object created by the application client.
Introduce a further variant of this method in which the Book details are
given as method parameters as in addBook(catalogNumber, title,
author).

2. The application script code in Library 01 first creates the Library object,
and then some Book objects, adds the Books to the Library stock, and
then displays the stock. What would have been the rationale for calling
the method displayStock immediately after creating the Library object?

3. In Iteration 3, the code that presents a menu to the user, determines the
choice made, and then actions that choice is rather repetitive. In keeping
with the discussions in Section 11.3 of Chapter 11, replace this code with
a lookup table that makes use of Groovy’s closures.

13.5 exercises 153

Barclay chap13.qxd 02/01/1904 9:57 PM Page 153

4. Software developers usually recognize similarities between the systems
they build. Although many of the details may be different, the overall
design and implementation are often very similar. In our case study, we
have a library with many books. However, we might have used a doctor
with many patients or a university with many students. The design and
the issues that arise from it would have been much the same.

Using this case study as a guide, consider the following:

● A car rental agency has several cars. Each car has a unique registration
number, make and model name, and year of registration. Cars may be
hired out to a customer registered with the company. Each customer
has a name and a unique customer number. We are asked to support
the company owner by logging which cars are rented to which cus-
tomers.

● A video shop has a large number of videos for rent to customers. Each
video has a unique title and each customer a unique registration num-
ber. As before, we are asked to log which videos are out on loan to
which customers.

● A hospital has many doctors and patients. Each doctor and patient has
a name and unique number. Doctors look after many patients but a
patient has exactly one doctor. We are asked to develop a patient moni-
toring system by recording which patient is associated with a particular
doctor.

● A university has many students, each with a unique matriculation num-
ber as well as a name and course of study. We are asked to be able to log
each student and obtain a display of all students as well as those in a
particular course.

Now develop a design and implementation based on one (or all) of them.
You can include as much detail as you think is appropriate.

5. You are required to develop software to support the administration of a
hotel. The major features of the hotel are:

● There are three floors numbered 1, 2, and 3, each of which has a vari-
able number of rooms.

● Not all floors have the same combination of rooms.

● Each room has a room number, for example, 201 for room 1 on floor 2.

154 C H A P T E R 13 Case Study: A Library Application (Objects)

Barclay chap13.qxd 02/01/1904 9:57 PM Page 154

● Each room has a maximum occupancy, that is, the number of people
who can use it.

Staff should be able to obtain details of each room on each floor in a vari-
ety of ways. As a minimum, the user must be able to request a report for:

● All the rooms on all floors

● All the rooms on a particular floor

● A particular room on a particular floor

and to decommission a room:

● Remove a particular room from a given floor

6. A software house employs programmers, each of whom has expertise in a
particular programming language, for example, Groovy, C++, or Java. All
programmers are paid a basic monthly salary of around 1000 pounds.
However, the amount may vary from programmer to programmer.

Since they are in demand, a 10% enhancement of the basic salary is
paid to each programmer who specializes in Groovy. However, program-
mers may change their specialist language and their salary enhancement
should change accordingly. For example, after suitable training, a C++ pro-
grammer could become a Groovy programmer.

When a new programmer joins the staff, a more experienced program-
mer is assigned to him as a mentor. Both must specialize in the same pro-
gramming language. The basic idea behind this practice is that the new
recruit (the mentee) will benefit from the experience of the mentor. Since
this is extra work for the mentor, he is awarded 5% of current salary
enhancement for every mentee under his supervision. When a programmer
no longer needs a mentor, the mentor’s salary is changed accordingly.

For administrative purposes, each employee has a name and a unique
payroll number.

You are required to develop software that supports the administration
of the company. At a minimum, it should produce a detailed report on each
programmer and a total monthly salary bill for the company.

13.5 exercises 155

Barclay chap13.qxd 02/01/1904 9:57 PM Page 155

The report should show for each programmer:

● Payroll number and name

● Specialist programming language and current monthly salary

together with:

● Details of any programmers that he is mentoring or is mentored by

156 C H A P T E R 13 Case Study: A Library Application (Objects)

Barclay chap13.qxd 02/01/1904 9:57 PM Page 156

157

C H A P T E R 14
inheritance

In this chapter, we introduce the inheritance relationship that may exist between
classes. It is widely used in object-oriented applications and brings to our
designs and programs a powerful feature unique to object orientation.

Inheritance (also known as specialization) is a way to form new classes using
classes that have already been defined. The former, known as derived classes,
inherit properties and behaviors of the latter, which are referred to as base classes.
The terms parent class and child class as well as superclass and subclass are also
used in this context. Inheritance is intended to help reuse existing code with lit-
tle or no modification.

Inheritance is also called generalization. For instance, an account is a general-
ization of current account (checking account) and deposit account (savings
account). We say that “account” is an abstraction of current account, deposit
account, and so on. Conversely, we can say that because current accounts are
accounts, that is, a current account is an account, that they inherit all the proper-
ties common to all accounts, such as the account number or the account balance.

14.1 inheritance

Consider a bank in which customers open various current (checking) accounts.
Each current account is given a unique account number, as well as a balance and
the permitted amount by which the account may be overdrawn. Using the
knowledge from the preceding two chapters, we might arrive at the class
CurrentAccount shown in Example 01.

Barclay chap14.qxd 02/01/1904 9:57 PM Page 157

When we execute this program, the output is as we expect. The two Account
objects in the List variable accounts are printed using the definition of the
toString method:

Current Account: AAA111; balance: 1000; overdraft : 400
Current Account: BBB222; balance: 2500; overdraft : 800

◆

Although there is nothing intrinsically wrong with this class, we can improve it
significantly. For example, it is likely that the bank also offers deposit (savings)
accounts to its customers. If our bank has this new type of account, then we
would also require a DepositAccount class. DepositAccounts are also given an
account number and a balance, but no overdraft. DepositAccounts, however,
earn interest. Both these types of accounts share some common characteristics,
while each has additional properties.

We can think of a CurrentAccount (checking account) and a DepositAccount
(savings account) as special kinds of Account. The Account class has the features
common to both the CurrentAccount and DepositAccount class, namely, the
account number and the balance. The CurrentAccount class is then related to the

158 C H A P T E R 14 Inheritance

class CurrentAccount {

String toString() {
return “Current Account: ${number}; balance: ${balance}; overdraft : ${overdraftLimit}”

}

// -----properties -----------------

def number
def balance
def overdraftLimit

}

// populate a list with the instances
def accounts = [new CurrentAccount(number : ‘AAA111’, balance : 1000, overdraftLimit : 400),

new CurrentAccount(number : ‘BBB222’, balance : 2500, overdraftLimit : 800)]

// now display each
accounts.each { acc ->

println acc // automatically call toString
}

EXAMPLE 01
CurrentAccount
class

Barclay chap14.qxd 02/01/1904 9:57 PM Page 158

14.1 inheritance 159

Account class by inheritance. The DepositAccount class is also related to the
Account class by inheritance. The Account class is usually referred to as the super-
class and the CurrentAccount (and DepositAccount) class as the subclass.

The class diagram shown in Figure 14.1 is used to denote this arrangement
of classes. An inheritance relation (directed arrow) relates the subclass
CurrentAccount and DepositAccount to the superclass Account.

The Groovy reserved word extends specifies that a class inherits from
another class. This leads to the code shown in Example 02. We will introduce
the DepositAccount class shortly.

Accountc

CurrentAccountc DepositAccountc

FIGURE 14.1 Inheritance.

EXAMPLE 02
Class inheritance

class Account {

String toString() { // redefinition
return “${number}; ${balance}”

}

// -----properties ---------------

def number
def balance

}

class CurrentAccount extends Account {

String toString() {
return ‘Current Account: ‘ + super.toString() + “; ${overdraftLimit}”

}

// ------properties ---------------

def overdraftLimit
}

// populate a list with the instances
def accounts = [new Account(number : ‘AAA111’, balance : 1000),

new CurrentAccount(number : ‘BBB222’, balance : 2000, overdraftLimit : 400),
new CurrentAccount(number : ‘CCC333’, balance : 3000, overdraftLimit : 800)]

Barclay chap14.qxd 02/01/1904 9:57 PM Page 159

// now display each
accounts.each { acc ->

println acc // automatically call toString
}

Executing this program produces the output:

AAA111; 1000
Current Account: BBB222; 2000; 400
Current Account: CCC333; 3000; 800

◆

Here we see that the first line of output differs from the other two. This is
because the first object in the accounts variable is an Account object while the
other two are CurrentAccount objects. Since the first object in the List is an
Account object, the implementation of the method toString in the Account class
is responsible for what is displayed. The same message toString is also sent to
the two CurrentAccount objects. However, in this class, the method toString
has been redefined and is the reason for the last two lines of output.

The CurrentAccount class now has only those features special to it.
Similarly, the Account class has only those relevant to accounts. This makes the
CurrentAccount class much easier to develop. It is important to realize that the
Account class can be reused in this application or any other. Later, we shall do
exactly this and inherit class DepositAccount from it.

Note how the method toString is redefined in the subclass CurrentAccount.
The behavior we require from it is to augment that produced by the toString
method in the superclass Account. Hence, the method definition in
CurrentAccount calls the method defined in the superclass with the expression
super.toString(). The keyword super ensures that we invoke the method
defined in the superclass. Without this keyword, the method toString in
CurrentAccount would recursively call itself (see Appendix G).

14.2 inherited methods

In Groovy, all the features declared in a superclass are inherited by a subclass.
This means that the CurrentAccount class (see preceding text) need declare only
those methods and properties required by itself. In this case, it is the additional
overdraftLimit property (we shall shortly discuss the method toString). In
more complex examples, this would represent a significant savings in effort.
Consider Example 03.

160 C H A P T E R 14 Inheritance

Barclay chap14.qxd 02/01/1904 9:57 PM Page 160

class Account {

String toString() { // redefinition
return “${number}; ${balance}”

}

// -----properties ------------------

def number
def balance

}

class CurrentAccount extends Account {

String toString() {
return ‘Current Account: ‘ + super.toString() + “; ${overdraftLimit}”

}

// -----properties -----------------

def overdraftLimit
}

// populate a list with the instances
def accounts = [new Account(number : ‘AAA111’, balance : 1000),

new CurrentAccount(number : ‘BBB222’, balance : 2000, overdraftLimit : 400),
new CurrentAccount(number : ‘CCC333’, balance : 3000, overdraftLimit : 800)]

// now display each
accounts.each { acc ->

println acc // automatically call toString
}

def ca = new CurrentAccount(number : ‘DDD444’, balance : 4000, overdraftLimit : 1200)

// use methods and inherited methods
println “Overdraft: ${ca.overdraftLimit}”
println “Number: ${ca.number}”

def ac = new Account(number : ‘EEE555’, balance : 1234)

println “Number: ${ac.number}” // OK
//println “Overdraft: ${ac.overdraftLimit}” // ERROR: no such property

14.2 inherited methods 161

EXAMPLE 03
Inherited features

Running this program delivers the output shown below. The first three lines
are as described for the preceding example. The next line is the overdraft limit
from the object ca. Because ca is an object of the class CurrentAccount, then

Barclay chap14.qxd 02/01/1904 9:57 PM Page 161

the message getOverdraftLimit is defined in its own class. The fifth line is the
result of sending the message getNumber to the same CurrentAccount object.
Since this class does not define this method, the system executes that inher-
ited from its superclass Account.

AAA111; 1000
Current Account: BBB222; 2000; 400
Current Account: CCC333; 3000; 800
Overdraft: 1200
Number: DDD444
Number: EEE555

◆

Take note of the lines of code near the end of the listing in which the
CurrentAccount object ca is created, and then the properties overdraftLimit
and number are accessed. The overdraftLimit property is, of course, defined in
the CurrentAccount class itself. However, the number property is inherited from
the Account class. The remaining three lines in the code show that an Account
object can be asked for its number (defined in the Account class), but we cannot
reference the overdraftLimit for a Account object because there is no such
property defined in that class.

14.3 redefined methods

In Groovy, all the features declared in a superclass are inherited by a subclass.
This means that if the CurrentAccount class did not define the toString
method, then the one defined in the Account class would be inherited and used
by all CurrentAccount objects. However, with Groovy, a method inherited by a
subclass can be redefined to have a different behavior. An obvious strategy is for
the toString method required in the CurrentAccount class to make use of the
toString method in the Account superclass and to augment it with additional
logic. Looking at Example 03, we see the toString method in class
CurrentAccount as:

String toString() {
return ‘Current Account: ‘ + super.toString() + “ by: ${overdraftLimit}”

}

Again, notice the use of the reserved keyword super. This time it is used to
ensure that the toString method defined in its superclass is called to get part of
the String returned by this CurrentAccount method.

162 C H A P T E R 14 Inheritance

Barclay chap14.qxd 02/01/1904 9:57 PM Page 162

14.4 polymorphism

A defining characteristic of object-oriented systems is the polymorphic effect.
A message sent to an object of some class is received as normal. However, an
object of a descendant class may also receive the same message. If the two classes
of objects have their own definitions of the method for the message, then we
may observe different behaviors. The use of the polymorphic effect results in
systems that are apparently simple but that have complex execution patterns.

We can see this occurring in Example 03. The code fragment:

14.4 polymorphism 163

def accounts = [new Account(number : ‘AAA111’, balance : 1000),
new CurrentAccount(number : ‘BBB222’, balance : 2000, overdraftLimit : 400),
new CurrentAccount(number : ‘CCC333’, balance : 3000, overdraftLimit : 800)]

// now display each
accounts.each { acc ->

println acc // automatically call toString
}

produces the output:

AAA111; 1000
Current Account: BBB222; 2000; 400
Current Account: CCC333; 3000; 800

The print statement sends each acc object the toString message (implicitly).
The first item taken from the List is an Account object and this produces the
first output line. This, of course, is produced by the method toString defined
in the Account class. The remaining two lines of output are, however, different
from the first even when the same message is being sent. This is a consequence
of the recipients being CurrentAccount objects for which the method toString
has been redefined in the CurrentAccount subclass.

The full extent of this polymorphic effect is presented in Example 04. This
application is concerned with modeling a Bank shown by the class diagram in
Figure 14.2.

The Bank accounts comprise either CurrentAccounts or DepositAccounts.
Methods are provided to open new accounts with the Bank and to obtain a
report on the Bank and its accounts.

Barclay chap14.qxd 02/01/1904 9:57 PM Page 163

class Account {

String toString() { // redefinition
return “${number}; ${balance}”

}

// -----properties ----------------------

def number
def balance

}

class CurrentAccount extends Account {

String toString() {
return ‘Current Account: ‘ + super.toString() + “; ${overdraftLimit}”

}

// -----properties ----------------------

def overdraftLimit
}

class DepositAccount extends Account {

String toString() {
return ‘Deposit Account: ‘ + super.toString() + “; ${interestRate}”

}

// ------properties ----------------------

def interestRate
}

class Bank {

def openAccount(account) {
accounts[account.numbergetNumber()] = account

}

164 C H A P T E R 14 Inheritance

Accountc

DepositAccountc

Bankc

CurrentAccountc

- accounts

*

FIGURE 14.2 Bank application.

EXAMPLE 04
Bank example

Barclay chap14.qxd 02/01/1904 9:57 PM Page 164

// ------properties ----------------------

def name
def accounts = [:]

}

def displayBank(bk) {
println “Bank: ${bk.name}”
println ‘====================’

bk.accounts.each { number, account -> println “ ${account}” }
}

// create a new Bank object
def bk = new Bank(name : ‘Barclay’)

// create some accounts
def ca1 = new CurrentAccount(number : ‘AAA111’, balance : 2000, overdraftLimit : 400)
def ca2 = new CurrentAccount(number : ‘BBB222’, balance : 3000, overdraftLimit : 800)
def da1 = new DepositAccount(number : ‘CCC333’, balance : 4000, interestRate : 4)

// add them to the bank
bk.openAccount(ca1)
bk.openAccount(ca2)
bk.openAccount(da1)

// now display everything
displayBank(bk)

The output from this program is:

Bank: Barclay
====================

Deposit Account: CCC333; 4000; 4
Current Account: BBB222; 3000; 800
Current Account: AAA111; 2000; 400

◆

14.4 polymorphism 165

Present in this example is the principle of substitution. This states that where in
our code an object of a superclass is expected, an object of a subclass can be
used. Method openAccount in class Bank has a single parameter representing
some kind of Account object. In the application code, we send this method to
the Bank object bk with CurrentAccount and DepositAccount objects. This is per-
missible, since the substitution principle ensures that when a superclass Account
object is expected, then only methods of that class will be used on the

Barclay chap14.qxd 02/01/1904 9:57 PM Page 165

parameter. Because the subclass objects automatically inherit that behavior, cor-
rect operation is guaranteed.

Finally, we should point out that since the Bank class is a domain model
class, then we choose not to include any display methods for the reasons given
in the previous chapter.

14.5 the abstract class

It is often useful to be able to define a class that acts only as a basis for estab-
lishing others. There is no intention to make an instance of it. It is a way of
guaranteeing that all descendants share a common set of features. This kind of
class is referred to as an abstract class.

For example, consider the bank application in Example 04. Assume that
there will never be an instance of an Account; we have CurrentAccounts or
DepositAccounts but never just Accounts. We intend that all accounts of the
Bank share common features such as number and balance. Therefore, we decide
that the class Account is stereotypical of an abstract class. In Figure 14.3, the
Account class has been decorated with “A” to emphasize that the class is abstract.

We specify that a class is abstract with the keyword abstract, as shown for
the Account class in Example 05. Otherwise, the remainder of the class and its
subclasses remain the same. The key observation is that Groovy supports the
notion that there is never any intention of creating instances of an abstract class.

abstract class Account {

String toString() { // redefinition
return “${number}; ${balance}”

}

// -----properties ------------------

def number
def balance

}

class CurrentAccount extends Account { ... }

class DepositAccount extends Account { ... }

class Bank { ... }

def displayBank(bk) { ... }

166 C H A P T E R 14 Inheritance

EXAMPLE 05
No instances of
abstract classes

Barclay chap14.qxd 02/01/1904 9:57 PM Page 166

// create a new Bank object
def bk = new Bank(name : ‘Barclay’)

// create some accounts
def ca1 = new CurrentAccount(number : ‘AAA111’, balance : 2000, overdraftLimit : 400)
def ca2 = new CurrentAccount(number : ‘BBB222’, balance : 3000, overdraftLimit : 800)
def da1 = new DepositAccount(number : ‘CCC333’, balance : 4000, interestRate : 4)

// add them to the bank
bk.openAccount(ca1)
bk.openAccount(ca2)
bk.openAccount(da1)

// now display everything
displayBank(bk)

//acc = new Account(number : ‘DDD444’, balance : 1234) // ERROR

◆

14.5 the abstract class 167

Accountc

CurrentAccountc DepositAccountc

A

FIGURE 14.3 Abstract class.

The program delivers the same output as for the previous example. The final
line of coding in Example 05 confirms that we are not permitted to create
instances of the abstract class Account.

It is common for an abstract class to include a deferred method, that is, one
for which no method definition is given. This usually arises because the class is
too abstract to determine how the method should be implemented. The inclu-
sion of a deferred method in an abstract class infers that subclasses must provide
an implementation if they are to represent concrete classes from which instances
can be created. In effect, the inclusion of a deferred method imposes a protocol
on subclasses that must be respected if a concrete class is required. A deferred
method in Groovy is known as an abstract method and is qualified with the
abstract keyword. In Example 06, the abstract class Account includes an
abstract method entitled isOverdrawn with the declaration:

// class Account
def abstract isOverdrawn()

Barclay chap14.qxd 02/01/1904 9:57 PM Page 167

abstract class Account {

String toString() { // redefinition
return “${number}; ${balance}”

}

def abstract isOverdrawn() // deferred method

// -----properties ------------------

def number
def balance

}

class CurrentAccount extends Account {

String toString() {
return ‘Current Account: ‘ + super.toString() + “; ${overdraftLimit}”

}

def isOverdrawn() { // redefinition
return balance < -overdraftLimit

}

// ------properties -------------------

def overdraftLimit
}

class DepositAccount extends Account {

String toString() {
return ‘Deposit Account: ‘ + super.toString() + “; ${interestRate}”

}

def isOverdrawn() { // redefinition
return balance < 0

}

// ------properties ------------------

def interestRate
}

class Bank {

def openAccount(account) {
accounts[account.number] = account

}

168 C H A P T E R 14 Inheritance

EXAMPLE 06
Abstract methods

Barclay chap14.qxd 02/01/1904 9:57 PM Page 168

// ------properties ------------------

def name
def accounts = [:]

}

def displayBank(bk) {
println “Bank: ${bk.name}”
println ‘====================’

bk.accounts.each { number, account -> println “ ${account}” }
}

// create a new Bank object
def bk = new Bank(name : ‘Barclay’)

// create some accounts
def ca1 = new CurrentAccount(number : ‘AAA111’, balance : 2000, overdraftLimit : 400)
def ca2 = new CurrentAccount(number : ‘BBB222’, balance : 3000, overdraftLimit : 800)
def da1 = new DepositAccount(number : ‘CCC333’, balance : 4000, interestRate : 4)

// add them to the bank
bk.openAccount(ca1)
bk.openAccount(ca2)
bk.openAccount(da1)

// now display everything
displayBank(bk)

// check status of some accounts
println “Current account: ${ca1.number}; overdrawn?: ${ca1.isOverdrawn()}”
println “Deposit account: ${da1.number}; overdrawn?: ${da1.isOverdrawn()}”

◆

14.6 the interface class 169

Again, the output from this program is the same as the previous two. Observe
the definitions for the method isOverdrawn in both the CurrentAccount and
DepositAccount classes. In the class CurrentAccount, the method checks the bal-
ance against the overdraftLimit. In the class DepositAccount, the balance is
checked to see if it is negative.

14.6 the interface class

It is possible to have an abstract class in which none of its methods has been
defined. They are all deferred to a subclass for their implementation. Such a class
is referred to as an interface class. Since no method is actually defined, an

Barclay chap14.qxd 02/01/1904 9:57 PM Page 169

interface presents only a specification of its behaviors. An interface proves
extremely useful, acting as the protocol to which one or more subclasses must
conform, that is, provide definitions for all its methods.

Groovy supports the concept of an interface class with the keyword inter-
face. Although it is similar to an abstract class with no defined methods, it is
important to realize that it is different in one important respect. It is that a class
that implements the interface, that is, one that provides methods for its deferred
operations, need not belong to the same class hierarchy. Although they may
implement other methods and have different parents, if they implement those
operations advertised by the interface, they can substitute for it. This simple fact
makes the interface an extremely powerful facility that gives the designer more
flexibility than the abstract class allows.

Consider the bank and its accounts. We can insist that we must be able to ask
any account to determine whether it is overdrawn. Clearly, the class to which an
account belongs must have implementations for the operation isOverdrawn.
However, there is no requirement that each class is part of the same inheritance
hierarchy. This is an important point that makes a critical difference to our design.
All that matters is that the Bank is able to send the message isOverdrawn to each of
its accounts. It may be possible to send other messages, but to be an account
opened by the Bank, only the isOverdrawn operation is required.

We can model this situation with a Groovy interface as shown in
Figure 14.4. The dashed inheritance arrows connecting AccountAB to AccountIF
denote that (abstract) class AccountAB implements the interface AccountIF. The
UML stereotype «interface» and/or the I adorns the AccountIF class.

The implementation for this is given in Example 07, where AccountIF is
introduced as an interface class. An interface declares, but does not define, one
or more abstract methods. The abstract class AccountAB conforms to the proto-
col since it implements the AccountIF class. Notice that the AccountAB class offers
a simple implementation for the isOverdrawn method. We must explicitly rede-
fine it in the CurrentAccount class.

170 C H A P T E R 14 Inheritance

<<interface>>

AccountABc

AccountIFI

CurrentAccountc

Bankc

DepositAccountc

A

- accounts

*

FIGURE 14.4 Interface class.

Barclay chap14.qxd 02/01/1904 9:57 PM Page 170

interface AccountIF {

def abstract isOverdrawn() // deferred method
}

abstract class AccountAB implements AccountIF {

String toString() { // redefinition
return “${number}; ${balance}”

}

def isOverdrawn() { // redefinition
return balance < 0

}

// -----properties ------------------

def number
def balance

}

class CurrentAccount extends AccountAB {

String toString() {
return ‘Current Account: ‘ + super.toString() + “; ${overdraftLimit}”

}

def isOverdrawn() { // redefinition
return balance <- overdraftLimit

}

// ------properties -------------------

def overdraftLimit
}

class DepositAccount extends AccountAB {

String toString() {
return ‘Deposit Account: ‘ + super.toString() + “; ${interestRate}”

}

// ------properties ------------------

def interestRate
}

14.6 the interface class 171

EXAMPLE 07
Interface class

Barclay chap14.qxd 02/01/1904 9:57 PM Page 171

class Bank {

def openAccount(account) {
accounts[account.number] = account

}

// ------properties ------------------

def name
def accounts = [:]

}

def displayBank(bk) {
println “Bank: ${bk.name}”
println ‘====================’

bk.accounts.each { number, account -> println “ ${account}” }
}

// create a new Bank object
def bk = new Bank(name : ‘Barclay’)

// create some accounts
def ca1 = new CurrentAccount(number : ‘AAA111’, balance : 2000, overdraftLimit : 400)
def ca2 = new CurrentAccount(number : ‘BBB222’, balance : 3000, overdraftLimit : 800)
def da1 = new DepositAccount(number : ‘CCC333’, balance : 4000, interestRate : 4)

// add them to the bank
bk.openAccount(ca1)
bk.openAccount(ca2)
bk.openAccount(da1)

// now display everything
displayBank(bk)

// check status of some accounts
println “Current account: ${ca1.number}; overdrawn?: ${ca1.isOverdrawn()}”
println “Deposit account: ${da1.number}; overdrawn?: ${da1.isOverdrawn()}”

Again, the output is the same as the most recent predecessors.

◆

172 C H A P T E R 14 Inheritance

Appendix B.5 briefly examines the place for interfaces in Groovy. Because of
Groovy’s dynamic typing, they are not actually required. With Groovy, poly-
morphism is simply a matter of matching method names and signatures.
However, as in Java, interfaces provide the notion of a protocol that must be

Barclay chap14.qxd 02/01/1904 9:57 PM Page 172

adhered to by all concrete subclasses. Further, Groovy code that includes an
interface would more readily translate to Java, should that be necessary.

14.7 exercises

1. Into Example 07, put an implementation for the method display in the
Account class so that it not required in the subclasses CurrentAccount and
DepositAccount.

2. Using Exercise 1 as a model, develop the classes StudentAB,
Undergraduate, and Postgraduate. Class StudentAB is an abstract class and
represents the general properties associated with students, namely, their
names and their registration numbers. The other two classes are concrete
specializations of class StudentAB. Class Undergraduate has the course
name and year of study, while class Postgraduate has a research title.
Establish a list of undergraduates and postgraduates and print their
details.

3. The following class diagram describes the individuals who are employed
by a software house. Consultants are temporary employees who receive a
500-pound monthly payment. A programmer receives an additional 10%
bonus to the basic monthly payment if he specializes in Groovy.

14.7 exercises 173

SoftwareHousec

Consultantc

Administratorc Programmerc

I EmployeeIF

EmployeeABcA

getPayrollNumber()

getMonthlySalary()

display()

display()

display()
getMonthlySalary()

payrollNumber: String
P

getMonthlySalary()

language: String
P

department: String
P

payrollNumber: String
P

name: String
P

monthlySalary: int
P

- employees

*

Barclay chap14.qxd 02/01/1904 9:57 PM Page 173

4. You are required to develop software to support the administration of a
hotel. The major features of the hotel are:

● There are three floors numbered 1, 2, and 3, each of which has up to
five rooms.

● Most rooms are ordinary bedrooms, but some are used for conferences.

● Conference rooms may have study rooms associated with them.

● Study rooms are simply modified bedrooms.

● Not all study rooms are associated with a conference room.

● Not all floors have the same combination of rooms.

● Each room has a room number, for example, 201 for room 1 on floor 2.

● Each room has a maximum occupancy, that is, the number of people
who can use it.

● Conference rooms also have a name.

Staff should be able to obtain details of each room on each floor in a vari-
ety of ways. At a minimum, the user must be able to request for a report
for:

● All the rooms on all floors

● All the rooms on a particular floor or

● A particular room on a particular floor

and to decommission a room:

● Remove a particular room from a given floor

If the room is a bedroom, then its number and maximum occupancy are
displayed. However, if it is a conference room, then its name and the room
number of each study room associated with it must also be given. A study
room displays the same information as a bedroom.

5. In the following listing, class Point represents a point in a two-dimen-
sional space. Complete the class hierarchy rooted on the interface
QuadrilateralIF. A Rectangle is defined by the position of the upper left
corner, width, and height.

174 C H A P T E R 14 Inheritance

Barclay chap14.qxd 02/01/1904 9:57 PM Page 174

class Point {

def moveBy(deltaX, deltaY) {
x += deltaX
y += deltaY

}

// -----properties -------------------

def x
def y

}

interface QuadrilateralIF {
def abstract getArea()
def abstract getPerimeter()
def abstract moveBy(deltaX, deltaY)

}

class Rectangle implements QuadrilateralIF {

// ------properties --------------------

def upperLeft
def width
def height

}

class Square extends Rectangle {
}

def rect = new Rectangle(upperLeft : new Point(x : 0, y : 10), width : 10, height : 5)
rect.moveBy(2, 4)

println “rect: ${rect.getArea()}, ${rect.getPerimeter()}” // output: 50, 30

def sq = new Square(upperLeft : new Point(x : 0, y : 10), width : 10, height : 10)

println “sq: ${sq.getArea()}, ${sq.getPerimeter()}” // output: 100, 40

14.7 exercises 175

6. Develop the classes SalariedEmployee and HourlyEmployee. A salaried
employee has a salary, which is paid out monthly. An hourly employee
has a fixed pay rate and a number of hours worked per month. Implement
the method computeMonthlyPay for these two subclasses, then show that
the monthly wages bill for the organization is 3300 pounds.

Barclay chap14.qxd 02/01/1904 9:57 PM Page 175

interface EmployeeIF {
def abstract getName()
def abstract getPayrollNumber()

}

abstract class EmployeeAB implements EmployeeIF {

def abstract computeMonthlyPay()

// -----properties ------------------

def name
def payrollNumber

}

class SalariedEmployee extends EmployeeAB {

// ------properties ------------------

def salary
}

class HourlyEmployee extends EmployeeAB {

// ------properties -------------------

def payRate // per hour
def hoursWorked // per month

}

class Company {

def hire(employee) {
employees[employee.payrollNumber] = employee

}

def getMonthlySalaryBill() {
def total = 0

employees.each { number, employee ->
total += employee.computeMonthlyPay()

}

return total
}

176 C H A P T E R 14 Inheritance

Barclay chap14.qxd 02/01/1904 9:57 PM Page 176

// ------properties -------------------

def name
def employees = [:]

}

def co = new Company(name : ‘Napier’)

def se1 = new SalariedEmployee(name : ‘Ken’, payrollNumber : 1111, salary : 12000)
def se2 = new SalariedEmployee(name : ‘John’, payrollNumber : 2222, salary : 18000)

def he1 = new HourlyEmployee(name : ‘Sally’, payrollNumber : 3333,
payRate : 5, hoursWorked : 160)

co.hire(se1)
co.hire(se2)
co.hire(he1)

println “Total monthly bill: ${co.getMonthlySalaryBill()}” // output: 3300

14.7 exercises 177

Barclay chap14.qxd 02/01/1904 9:57 PM Page 177

This page intentionally left blank

179

C H A P T E R 15

This chapter explores the use of the JUnit testing framework within the Groovy
environment. We use classes from the case study of Chapter 13 to illustrate how
unit testing can be accomplished with the GroovyTestCase class. Next, we show
how several GroovyTestCases can be combined into a GroovyTestSuite. Finally,
we reflect on the role of unit testing in an iterative, incremental approach to
application development. Throughout our discussion, we emphasize just how
easy it is to benefit from unit testing with Groovy.

15.1 unit testing

The fundamental unit of an object-oriented system is the class. Therefore, an
obvious candidate for a unit in unit testing is the class. The approach taken is to
create an object of the class under testing and use it to check that selected meth-
ods execute as expected. Normally, we do not test every method, since it is not
always possible or even desirable to do so. Our aim is to detect and correct any
likely failures that might arise when a class is deployed in an application.

Unit testing is a programming activity, and so each unit test involves the
internal coding details of the class under test. This is known as white box testing
to suggest that we can “look inside” the class to see its inner workings. The alter-
native is black box testing which, as its name suggests, does not look inside the
class. Its purpose is to check the overall effect of a method without any knowl-
edge of how it is internally coded. The use case (functional) tests in Chapters 11
and 13 are examples of black box testing.

unit testing ⁽ junit ⁾

Barclay chap15.qxd 02/01/1904 9:58 PM Page 179

Perhaps the most obvious approach to unit testing is to build a test script
that prints the expected results. Using the Book and Library classes from
Example 01 of Chapter 13, we might have a test script, held in the file
runBookTest.groovy, coded as:

class Book {

def String toString() {
return “Book: ${catalogNumber}: ${title} by: ${author}”

}

// -----properties -----------------

def catalogNumber
def title
def author

}

//create the Book under test
def bk1 = new Book(catalogNumber : ‘111’, title : ‘Groovy’, author: ‘Ken’)

// test the method toString
println bk1

On execution, we have the output:

Book: 111: Groovy by: Ken

and we make a visual check of the actual output against the output expected.
Unfortunately, as the number of tests increases, our workload also increases.

Every time the class under test is modified, the test script must be run to make
sure that none of the tests fails. If we bear in mind that there may be a very large
number of such tests, it is no surprise that this approach is not very successful.
It is just too time consuming and—it has to be said—is rather boring.

There are several other alternatives, but most of them are flawed in some
way. For example, inserting test code into a debugger is not much better than
the test script approach. Such tests usually require the original author to inter-
pret them, which means that they don’t retain their benefit over time. When the
original author is no longer available, such tests can be difficult or even impos-
sible to apply. Another approach is to make assertions, as illustrated in Example
14 of Chapter 7. However, assertion checking can make our code unnecessarily
complex and may adversely affect execution speed.

Using a commercial testing tool can also be problematic. Typically, such
tools are expensive and require a considerable investment in time and effort to

180 C H A P T E R 15 Unit Testing (JUnit)

Barclay chap15.qxd 02/01/1904 9:58 PM Page 180

15.2 the groovytestcase and junit testcase classes 181

use them effectively. They are often too “heavyweight” for unit testing and are
better suited to more demanding testing situations, for example, for the use-case
(functional) testing of large applications.

15.2 the groovytestcase and junit
testcase classes

JUnit is an open-source testing framework that is the accepted industry standard
for the automated unit testing of Java code (see http://www.junit.org). It was
originally written by Erich Gamma and Ken Beck, whose main goal was to write
a unit testing framework that programmers would actually use. Two secondary
goals were to encourage the writing of tests that retain their value over time and
to use existing tests to create new ones.

Fortunately, the JUnit framework can be easily used for testing Groovy
classes. All that is required is to extend the GroovyTestCase class that is part of
the standard Groovy environment. It is based on the JUnit TestCase class.

Typically, a unit test case consists of several test methods, each of which
tests a method declared in the class under test. For example, we might replace
the previous test script with:

The GroovyTestCase class has been carefully constructed to minimize the
amount of work we have to do. For example, each method prefixed by test in
BookTest is compiled and executed just like a normal Groovy script. This applies
to any class that extends GroovyTestCase.

In the test methods, we make assertions about the state of the code. If dur-
ing the execution of a test method an assertion is false, then it indicates there is

import groovy.util.GroovyTestCase

class BookTest extends GroovyTestCase {

/**
* Test that the expected String is returned from toString
*/
def void testToString() {

def bk1 = new Book(catalogNumber : ‘111’, title : ‘Groovy’, author : ‘Ken’)
def expected = ‘Book: 111: Groovy by: Ken’

assertToString(bk1, expected)
}

}

Barclay chap15.qxd 02/01/1904 9:58 PM Page 181

a problem and the test fails. Groovy has an automatic mechanism for reporting
on the location and nature of the failure. Alternatively, if the assertion is true,
the test passes. There are several different assertions that can be made but, for
our purposes, we need relatively few and they will be explained as we use them.
Interested readers should consult the Groovy website for more extensive and
detailed information.

For example, in testToString, we test that that when toString is called on
the Book referenced by bk1, it should return the expected value. We accomplish
this by making the assertion:

assertToString(bk1, expected)

The assertion is true and the test passes if the value of the String returned by
bk1.toString() is equal to value of expected. Otherwise, the assertion is false
and the test fails.

Execution of BookTest results in the test report:

.
Time: 0.05

OK (1 test)

Note that as the single test in BookTest has passed, the feedback given is mini-
mal, that is, a dot representing the test and the execution time in seconds. This
is intentional, since we just don’t need to know any more than that the test
passed. However, as we shall discover, if an assertion fails, we are given a more
detailed report.

If we consider the Library class from Example 01 of Chapter 13, its unit
tests are more interesting. For example, we might have:

182 C H A P T E R 15 Unit Testing (JUnit)

import groovy.util.GroovyTestCase

class LibraryTest extends GroovyTestCase {

/**
* Set up the fixture
*/

void setUp(){
lib = new Library(name : ‘Dunning’)

bk1 = new Book(catalogNumber : ‘111’, title : ‘Groovy’, author :’Ken’)

Barclay chap15.qxd 02/01/1904 9:58 PM Page 182

bk2 = new Book(catalogNumber : ‘222’, title : ‘OOD’, author : ‘Ken’)
}

/**
* Test that addition of a Book to an empty Library results in one more Book
* in the Library
*/

void testAddBook_1() {
def pre = lib.loanStock.size()
lib.addBook(bk1)
def post = lib.loanStock.size()

assertTrue(‘one less book than expected’, post == pre + 1)
}

/**
* Test that the addition of two Books with different catalog numbers
* to an empty Library results in two Books in the Library
*/

void testAddBook_2() {
lib.addBook(bk1)
lib.addBook(bk2)
def expected = 2
def actual = lib.loanStock.size()

assertTrue(‘unexpected number of books’, expected == actual)
}

// -----properties -----------------

def lib

def bk1
def bk2

}

15.2 the groovytestcase and junit testcase classes 183

Notice that we use a numbering scheme with a suitable comment for a method
with several tests. However, the use of more meaningful method names, such as
testAddPublicationWithDifferentCatalogNumber, is a popular alternative.

The method setUp establishes the environment (context) in which each test
method executes. The test environment is known as the test fixture and it must
be initialized each time a test method executes. This ensures that there is no
interference between tests and that they can be run in any order. Groovy
arranges for setUp to be automatically executed before the execution of each test
method.

Barclay chap15.qxd 02/01/1904 9:58 PM Page 183

In our LibraryTest class, the test fixture is a Library object referenced by
lib and two Book objects referenced by bk1 and bk2, respectively. They are
defined as properties of LibraryTest and all three are initialized by setup.

In each test method, we assert that something is true. If it is not, then the
test fails and the failure is reported with a suitable message. For example, in
testAddBook_1, we assert that on completion of the method, there should be
one more Book in the Library with:

assertTrue(‘one less book than expected’, post == pre + 1)

If the condition post == pre + 1 evaluates to true, then the assertion is true.
Otherwise, the assertion is false and a failure is reported with the text:

one less book than expected

incorporated into it to help identify the nature of the problem.
Similarly, in testAddBook_2, we assert that the addition of two Books with

different catalog numbers to an empty Library should result in a Library with
two Books in it. Execution of LibraryTest produces the output:

..
Time: 0.741

OK (2 tests)

and so we know that the two tests have passed. Although they appear to be
rather simple, these tests give us confidence that the Library class is behaving as
planned. There is no need to construct elaborate unit tests. In fact, it is normally
much better to have several tests, each of which tests just one logical path
through the method under test. They are not a burden since they are automat-
ically compiled, executed, and checked. As we add more and more tests, we have
more and more confidence in our code.

Unit testing is all about using our experience as programmers to detect and
correct possible failures in our code. To illustrate, let’s pose the question: What
happens if we attempt to add a book with the same catalog number as one
already in the library?

Perhaps we are not sure but suspect that it is not added. Therefore, a suit-
able test to add to LibraryTest is:

// class LibraryTest
/**
* Set up the fixture
*/

184 C H A P T E R 15 Unit Testing (JUnit)

Barclay chap15.qxd 02/01/1904 9:58 PM Page 184

void setUp(){
// ...
bk3 = new Book(catalogNumber : ‘222’, title : ‘UML’, author : ‘John’)

}

/**
* Test that addition of a Book with the same catalog number
* as one already present in the Library results in no change
* to the number of Books in the Library
*/
void testAddBook_3() {

lib.addBook(bk1)
lib.addBook(bk2)
def pre = lib.loanStock.size()
lib.addBook(bk3)
def post = lib.loanStock.size()

assertTrue(‘one more book than expected’, post == pre)
}

On execution of LibraryTest, we have:

...
Time: 0.772

OK (3 tests)

However, the next question becomes, Is it the original or the new book that is
in the library?

Let’s assume we want it to be the original. Now, we can add another test
method to LibraryTest:

/**
* Test that addition of a Book with the same catalog number
* as one already present in the Library results in no change
* to the loan stock
*/
void testAddBook_4() {

lib.addBook(bk2)
lib.addBook(bk3)
def expected = ‘Book: 222: OOD by: Ken’
def actual = lib.loanStock[‘222’]

assertToString(actual, expected)
}

15.2 the groovytestcase and junit testcase classes 185

Barclay chap15.qxd 02/01/1904 9:58 PM Page 185

On execution of LibraryTest, we get:

....F
Time: 0.901
There was 1 failure:
1) testAddBook_4(LibraryTest)junit.framework.AssertionFailedError:
toString() on value: Book: 222: UML by: John expected:<Book: 222: OOD
by: Ken> but was:<Book: 222: UML by: John>

FAILURES!!!
Tests run: 4, Failures: 1, Errors: 0

Now, the test report informs us that the fourth test method failed (hence, the
four dots and F). It then goes on to give more information about the failure.
Although it does not concern us here, note that if an unexpected exception
occurs, an error, not a failure, is reported.

Having established that there is a problem with the addBook method in the
Library class, we now recode the method as:

// class Library
def addBook(bk) {

if(!loanStock.containsKey(bk.catalogNumber))
loanStock[bk.catalogNumber] = bk

}

and execute the LibraryTest to give:

....
Time: 0.882

OK (4 tests)

Happily, all four tests pass and as a result we have more confidence in our code.
Notice that we made the least number of changes to pass the fourth test and that
previous tests have not been invalidated.

15.3 the groovytestsuite and junit
testsuite classes

We anticipate that there will be one test case class for every class in an applica-
tion. Therefore, it would be convenient if we could arrange to have all of our
test cases gathered together as one entity. In the previous section, we discovered

186 C H A P T E R 15 Unit Testing (JUnit)

Barclay chap15.qxd 02/01/1904 9:58 PM Page 186

that the GroovyTestCase class makes it easy for us to write, compile, and execute
a single JUnit TestCase. In a similar fashion, the GroovyTestSuite class makes
it easy for us to use the JUnit TestSuite class designed to manage the execution
of several JUnit TestCases.

Consider the following Groovy script, runAllTests.groovy:

import groovy.util.GroovyTestSuite
import junit.framework.Test
import junit.textui.TestRunner

class AllTests {

static Test suite() {
def allTests = new GroovyTestSuite()

allTests.addTestSuite(BookTest.class)
allTests.addTestSuite(LibraryTest.class)

return allTests
}

}

TestRunner.run(AllTests.suite())

The AllTests class has a static method, suite. It returns a GroovyTestSuite,
referenced by allTests, to which the Class object for each GroovyTestCase has
been added. Note that Test is an interface implemented by GroovyTestSuite. It
just ensures that a GroovyTestSuite can be run.

On execution of the script, there is a call to the static run method of the
TestRunner class. The actual parameter to this method call is the Test object
returned by the suite method of the class AllTests. The run method automatically
executes each GroovyTestCase in the GroovyTestSuite. In our case, they are the
BookTest and LibraryTest classes developed previously. The details of how this is
accomplished need not concern us here, but interested readers should consult the
JUnit website (see http://www.junit.org) for more information.

Just as with a GroovyTestCase, we compile and execute runAllTests as nor-
mal to give a test report:

.....

Time: 0.861
OK (5 tests)

15.3 the groovytestsuite and junit testsuite classes 187

Barclay chap15.qxd 02/01/1904 9:58 PM Page 187

As before, all five tests (one from BookTest and four from LibraryTest) pass.
Note that previously the TestRunner was executed “under the cover.” Here, we
find it convenient to make its presence explicit. Interested readers may like to
consult the Groovy website (see http://groovy.codehaus.org) for alternatives.

To appreciate just how useful unit testing with Groovy is, if we return to
the addBook method in the Library class, then we might decide that it should
report on the success or failure of adding a Book. Therefore, we recode the
method as:

// class Library

def addBook(bk) {
if(!loanStock.containsKey(bk.catalogNumber)){

loanStock[bk.catalogNumber] = bk
return true

} else
return false

}

and add two new test methods to our LibraryTest class:

// class LibraryTest

/**
* Test that successfully adding a Book to the Library
* is detected
*/
void testAddBook_5() {

def success = lib.addBook(bk2)

assertTrue(‘addition expected’, success)
}

/**
* Test that unsuccessfully attempting to add a Book with the same
* catalog number as one already present in the Library is detected
*/
void testAddBook_6() {

lib.addBook(bk2)
def success = lib.addBook(bk3)

assertFalse(‘no addition expected’, success)
}

188 C H A P T E R 15 Unit Testing (JUnit)

Barclay chap15.qxd 02/01/1904 9:58 PM Page 188

Now, all we have to do is to execute runAllTests to give the test report:

.......
Time: 1.01

OK (7 tests)

Notice that assertFalse returns true if the condition evaluates to false. We
find it more convenient than its equivalent:

assertTrue(‘no addition expected’, success == false)

Because all of the previous tests have passed, we are reasonably confident that
any changes made have not had a detrimental effect on the rest of our code. This
has been achieved with minimal effort on our part. That is one of the reasons
why unit testing is such a powerful tool in our armory!

15.4 the role of unit testing

Unit testing is an integral part of our iterative, incremental approach to software
development. Therefore, in Iteration 2 of the Chapter 13 case study, we would
normally develop a BorrowerTest class for unit testing the Borrower class. For
example, we might decide that a Borrower can only borrow a given Book once
and have the following BorrowerTest class:

import groovy.util.GroovyTestCase

class BorrowerTest extends GroovyTestCase {

/**
* Set up the fixture
*/

void setUp(){
bor1 = new Borrower(membershipNumber : ‘1234’, name : ‘Jessie’)

bk1 = new Book(catalogNumber : ‘111’, title : ‘Groovy’, author : ‘Ken’)
bk2 = new Book(catalogNumber : ‘222’, title : ‘OOD’, author : ‘Ken’)
bk3 = new Book(catalogNumber : ‘222’, title : ‘UML’, author : ‘John’)

}

15.4 the role of unit testing 189

Barclay chap15.qxd 02/01/1904 9:58 PM Page 189

/**
* Test that a Borrower with no Books on loan can borrow a Book
*/

void testAttachBook_1() {
def pre = bor1.borrowedBooks.size()
bor1.attachBook(bk1)
def post = bor1.borrowedBooks.size()

assertTrue(‘one less book than expected’, post == pre + 1)
}

/**
* Test that a Borrower with no Books on loan can borrow two Books
* with different catalog numbers
*/

void testAttachBook_2() {
bor1.attachBook(bk1)
bor1.attachBook(bk2)
def expected = 2
def actual = bor1.borrowedBooks.size()

assertTrue(‘unexpected number of books’, expected == actual)
}

/**
* Test that an attempt to borrow a Book with the same catalog number
* as one already borrowed results in no change to the number of
* Books borrowed
*/

void testAttachBook_3() {
bor1.attachBook(bk2)
def pre = bor1.borrowedBooks.size()
bor1.attachBook(bk3)
def post = bor1.borrowedBooks.size()

assertTrue(‘one more book than expected’, post == pre)
}

/**
* Test that an attempt to borrow a Book with the same catalog number
* as one already borrowed results in no change to the borrowed books
*/

void testAttachBook_4() {
bor1.attachBook(bk2)
bor1.attachBook(bk3)
def expected = ‘Book: 222: OOD by: Ken’
def actual = bor1.borrowedBooks[‘222’]

190 C H A P T E R 15 Unit Testing (JUnit)

Barclay chap15.qxd 02/01/1904 9:58 PM Page 190

assertToString(actual, expected)
}

// -----properties -----------------

def bor1

def bk1
def bk2
def bk3

}

We discover that to make the Borrower class pass the tests, we must recode the
attachBook method as:

// class Borrower

def attachBook(bk) {
if(!borrowedBooks.containsKey(bk.catalogNumber)) {

borrowedBooks[bk.catalogNumber] = bk
bk.attachBorrower(this)
return true

}
else

return false
}

Having done so, we add BorrowerTest.class to the GroovyTestSuite in
AllTests:

// ...

class AllTests {

static Test suite() {
def allTests = new GroovyTestSuite()

// ...
allTests.addTestSuite(BorrowerTest.class)

return allTests
}

}

// ...

and then execute runAllTests as normal:

15.4 the role of unit testing 191

Barclay chap15.qxd 02/01/1904 9:58 PM Page 191

...........
Time: 1.152

OK (11 tests)

Again, as part of Iteration 2, we should also update the LibraryTest and
BookTest classes with new test methods that test changes made to the Library
and Book classes, respectively. For example, we might have:

// class LibraryTest

/**
* Set up the fixture
*/

void setUp(){

// ...
bor1 = new Borrower(membershipNumber : ‘1234’, name : ‘Jessie’)

}

// ...

/**
* Test that registering a Borrower with an empty Library results
* in one more Borrower in the Library
*/

void testRegisterBorrower_1() {
def pre = lib.borrowers.size()
lib.registerBorrower(bor1)
def post = lib.borrowers.size()

assertTrue(‘one less borrower than expected’, post == pre + 1)
}

// ...
def bor1

// ...

Execution of runAllTests gives the test report:

............
Time: 1.412

OK (12 tests)

192 C H A P T E R 15 Unit Testing (JUnit)

Barclay chap15.qxd 02/01/1904 9:58 PM Page 192

Normally, we continue in this manner, adding new test methods and test
cases as the code develops. The ease of use of unit testing with Groovy makes
effective unit testing a normal part of the software development process. The
resulting benefits are enormous!

Complete listings for the GroovyTestCases and GroovyTestSuite developed
in this chapter are supplied on the book website.

15.5 exercises

Using the Book, Borrower, and Library classes from Iteration 2 of Chapter 13,
you are required to develop three new test methods for the LibraryTest class
developed in this chapter.

1. Test that registering two Borrowers with different membership numbers
to an empty Library results in two Borrowers in the Library.

2. Test that an attempt to register a Borrower with the same membership
number as one already in the Library results in no change to the number
of Borrowers in the Library.

3. Test that an attempt to register a Borrower with the same membership
number as one already in the Library results in no change to the
Borrowers already registered.

4. An alternative to the GroovyTestSuite is to use a build tool such as Ant
(see http://ant.apache.org) or Maven (see http://maven.apache.org).
Unfortunately, a discussion of these powerful tools is outside the scope of
this book. However, interested readers will benefit from a study of
Groovy’s XMLBuilder class, discussed in Chapter 19, before referring to the
Groovy home website for the details of Groovy’s AntBuilder class.

15.5 exercises 193

Barclay chap15.qxd 02/01/1904 9:58 PM Page 193

This page intentionally left blank

195

C H A P T E R 16

The library application first appeared in Chapter 6. There, we showed how
Lists and Maps can be combined to produce data structures to manage the book-
keeping required by a library. In that chapter, the data maintained in these col-
lections were simple strings. In Chapter 11, we enhanced the capabilities of the
system by making use of procedural code and closures. A text-based menu was
introduced to support user interaction. Later, in Chapter 13, we used objects
with more interesting state information and behaviors to represent the library,
its borrowers, and books. We also removed any input/output responsibilities
from them and introduced another class for this purpose.

In the first two iterations in this chapter, we revisit the same case study and
use class inheritance to model not just books and journals but publications in
general. As with the earlier versions, we use containers to help model the rela-
tionships established among objects. Similarly, we continue to make use of unit
tests. In the third iteration, we address the problem of error detection and user
feedback as well as enhancing the functionality of the system. Finally, in the last
iteration, we demonstrate how easy it is to use Groovy to police constraints
placed on the model.

16.1 specification

As in the case study of Chapter 13, we assume a sufficient familiarity with the
operation of a library to understand the following description:

case study: a l ibrary
application ⁽ inheritance⁾

Barclay chap16.qxd 02/01/1904 9:58 PM Page 195

A library has a name and holds a number of stock items that may be either books or journals.
Books and journals both have a title and a unique catalog number. However, each book has
an author and each journal has the name of its editor. The system should be able to display the
stock items available for loan and those that are out on loan. At some point in the future, the
library will hold other stock items such as videos and compact disks.

There are registered borrowers, each with a name and unique membership number. A borrower
may borrow and return a book or journal. The system should record each transaction. To record
the borrowing of a book or journal, the membership number of the borrower and the catalog
number for the publication are required. To record that a book or journal has been returned,
only the catalog number is required.

The system should also be able to display details of the stock items out on loan to borrowers.

We are required to develop an application to support the librarian. The require-
ments are easily captured in a set of use-cases. The only difference is that we now
add, display, lend, and return journals to/from the library. Here, we choose to
simply tabulate our requirements in Table 16.1.

As with the previous case study, we develop a number of iterations, each
with a stated aim that we demonstrate has been achieved.

16.2 iteration 1 : confirm the
polymorphic effect

The specification mentions two kinds of stock items held in the library: books
and journals. Further, we are advised that, in the future, videos and CDs will

196 C H A P T E R 16 Case Study: A Library Application (Inheritance)

TABLE 16.1 Use Cases for the Library Application

● Add new book
● Add new journal
● Display stock
● Display stock available for loan
● Display stock on loan
● Register new borrower
● Display borrowers
● Lend one book
● Lend one journal
● Return one book
● Return one journal

Barclay chap16.qxd 02/01/1904 9:58 PM Page 196

16.2 iteration 1 : confirm the polymorphic effect 197

also be available. This suggests a class hierarchy for the various types of loan
items. It should be capable of extending horizontally to include new categories
of items and vertically to further specialize the items.

The initial class diagram is given in Figure 16.1. The Publication class rep-
resents any item that may be borrowed from the library. It is an abstract class
and carries the properties and behaviors common to all borrowed items: the
item catalog number and title as well as the provision of its textual representa-
tion. The two subclasses represent the actual items currently available in the
library stock. In addition to the catalog number and title properties inherited
from the superclass Publication, the subclass Book has an author property while
subclass Journal has an editor property.

This leads us to develop the Groovy classes Publication, Book, and Journal
held in the files Publication.groovy, Book.groovy, and Journal.groovy, respec-
tively.

abstract class Publication {

String toString() { // redefinition
return “${catalogNumber}: ${title}”

}

// -----properties -----------------

def catalogNumber
def title

}

class Book extends Publication {

String toString() {
return ‘Book: ‘ + super.toString() + “ by: ${author}”

}

// -----properties -----------------

def author
}

class Journal extends Publication {

String toString() {
return ‘Journal: ‘ + super.toString() + “ edited by: ${editor}”

}

Barclay chap16.qxd 02/01/1904 9:58 PM Page 197

// -----properties -----------------

def editor
}

When deploying a class hierarchy, we need to be assured that we are cor-
rectly initializing the objects and that any polymorphic behavior operates as
expected. This is the aim of this iteration. As all three classes redefine the
toString method (Publication redefines toString from Object, Book and
Journal redefines toString from Publication), we must ensure that we get the
expected polymorphic behavior.

Following the discussions of the previous chapter, we create the
GroovyTestCases, BookTest, and JournalTest for unit testing the Book and
Journal classes. In the BookTest class, we have:

198 C H A P T E R 16 Case Study: A Library Application (Inheritance)

Bookc Journalc

PublicationcA

FIGURE 16.1 Initial class hierarchy.

import groovy.util.GroovyTestCase

class BookTest extends GroovyTestCase {

/*
* Test that the expected String is returned
*/

void testToString() {
def bk1 = new Book(catalogNumber : ‘111’, title : ‘Groovy’, author : ‘K Barclay’)
def expected = ‘Book: 111: Groovy by: K Barclay’

assertToString(bk1, expected)

}
}

The JournalTest class is similar. Notice that the unit tests also guarantee the con-
structor usage since the toString methods make use of all the object properties.

Because we also intend unit testing other classes, we have a runAllTests
script to run a GroovyTestSuite, as described in Chapter 15.

Barclay chap16.qxd 02/01/1904 9:58 PM Page 198

import groovy.util.GroovyTestSuite
import junit.framework.Test
import junit.textui.TestRunner

class AllTests {

static Test suite() {
def allTests = new GroovyTestSuite()

allTests.addTestSuite(BookTest.class)
allTests.addTestSuite(JournalTest.class)

return allTests
}

}

TestRunner.run(AllTests.suite())

We can easily add other GroovyTestCases later.
As execution of the script results in the following test report:

..
Time: 0.39

OK (2 tests)

it confirms that we have the correct object initialization and polymorphic
behavior. Therefore, we have achieved the aim of this iteration.

16.3 iteration 2 : demonstrate the
required functionality

Having established that we can make use of the polymorphic effect, the aim of
this iteration is to demonstrate that we can achieve the required system func-
tionality described in the use cases of Section 16.1.

We have introduced the abstract class Publication with the properties and
behaviors common to all borrowed items. Therefore, we adjust the class diagram
in Figure 13.3 to reflect this decision. It is shown in Figure 16.2.

Clearly, we can base the implementation of these classes on those of the case
study of Chapter 13. However, we can also incorporate the changes made to the
Library and Borrower classes as a result of the unit testing in Chapter 15.
Happily, we can also retain the Library and Borrower unit tests. We just add
LibraryTest and BorrowerTest to the GroovyTestSuite in runAllTests.

16.3 iteration 2 : demonstrate the required functionality 199

Barclay chap16.qxd 02/01/1904 9:58 PM Page 199

Given the dynamic nature of Groovy, it makes no difference whether the
Library and Borrower classes maintain a collection of Books or a collection of
Publications. All that matters is that we send messages that correspond to
methods declared in the recipient object’s class or superclass(es). Therefore, all
that is required are minor cosmetic name changes to the Library, Borrower, and
GroovyTestCase classes. For example, we now have:

// class Library
def addPublication(publication) {

if(!loanStock.containsKey(publication.catalogNumber)) {
loanStock[publication.catalogNumber] = publication
return true

}
else

return false
}

and

// class Borrower
def attachPublication(publication) {

if(!borrowedPublications.containsKey(publication.catalogNumber)) {
borrowedPublications[publication.catalogNumber] = publication
publication.attachBorrower(this)
return true

}
else
return false

}

200 C H A P T E R 16 Case Study: A Library Application (Inheritance)

Bookc Journalc

PublicationcABorrowerc

Libraryc

Actionc

- borrowedPublications

*

- borrower

0..1

0..1 - library

* - loanStock- borrowers *

FIGURE 16.2 Class diagram.

Barclay chap16.qxd 02/01/1904 9:58 PM Page 200

and

/**
* Test that addition of a Book to an empty Library results in one
* more Publication in the Library
*/

void testAddPublication_1() {
def pre = lib.loanStock.size()
lib.addPublication(bk1)
def post = lib.loanStock.size()

assertTrue(‘one less publication than expected’, post = pre + 1)
}

Of course, the Action class also needs minor changes. For example, as well
as a method to read the details for a new Book, there is a similar method to read
the details for a new Journal.

16.3 iteration 2 : demonstrate the required functionality 201

LIBRARY 01
A library of books
and journals

// class Action
def addJournal() {

print(‘\nEnter journal catalog number: ‘)
def catalogNumber = Console.readLine()
print(‘Enter journal title: ‘)
def title = Console.readLine()
print(‘Enter journal editor: ‘)
def editor = Console.readLine()

def jo = new Journal(catalogNumber : catalogNumber, title : title, editor : editor)

library.addPublication(jo)
}

Finally, we modify the Groovy script that presents a menu to a user and
actions user choices. It is shown as Library 01.

import console.*

def readMenuSelection() {
println()
println(‘0: Quit’)
println(‘1: Add new book’)
println(‘2: Add new journal’)
println(‘3: Display stock’)
println(‘4: Display publications available for loan’)
println(‘5: Display publications on loan’)

Barclay chap16.qxd 02/01/1904 9:58 PM Page 201

println(‘6: Register new borrower’)
println(‘7: Display borrowers’)
println(‘8: Lend one publication’)
println(‘9: Return one publication’)

print(‘\n\tEnter choice>>> ‘)
return Console.readString()

}

// make the Action object
def action = new Action(library : new Library(name : ‘Dunning’))

// make first selection
def choice = readMenuSelection()
while(choice != ‘0’) {

if(choice == ‘1’) { // Add new book
action.addBook()

} else if(choice == ‘2’){ // Add new journal
action.addJournal()

} else if(choice == ‘3’) { // Display stock
action.displayStock()

} else if(choice == ‘4’) { // Display publications available for loan
action.displayPublicationsAvailableForLoan()

} else if(choice == ‘5’) { // Display publications on loan
action.displayPublicationsOnLoan()

} else if(choice == ‘6’) { // Register new borrower
action.registerBorrower()

} else if(choice == ‘7’) { // Display borrowers
action.displayBorrowers()

} else if(choice == ‘8’) { // Lend one publication
action.lendPublication()

} else if(choice == ‘9’) { // Return one publication
action.returnPublication()

} else {
println(“Unknown selection”)

}
// next selection

choice = readMenuSelection()
}
println(‘\nSystem closing’)

◆

202 C H A P T E R 16 Case Study: A Library Application (Inheritance)

Complete listings for the script and supporting classes are given on the book
website.

Barclay chap16.qxd 02/01/1904 9:58 PM Page 202

To complete this iteration, we run our unit tests. Happily, they all pass.
Next, we use the menu to carry out functional testing. An obvious strategy is to
make choices (assisted by the various display options) that correspond to the
use-cases identified earlier. An illustrative session (with user data input shown
emboldened and italized) is:

0: Quit
1: Add new book
2: Add new journal
3: Display stock
4: Display publications available for loan
5: Display publications on loan
6: Register new borrower
7: Display borrowers
8: Lend one publication
9: Return one publication

Enter choice>>> 1

Enter book catalog number: 111
Enter book title: Groovy
Enter book author: K BBarclay

// Present menu to the user

Enter choice>>> 2

Enter journal catalog number: 333
Enter journal title: JOOP
Enter journal editor: S SSmith

// Present menu to the user

Enter choice>>> 3

Library: Dunning
=============

Book: 111: Groovy by: K Barclay
Journal: 333: JOOP edited by: S Smith

// Present menu to the user

Enter choice>>> 0

System closing

Having encountered no problems, we consider this iteration to be complete.

16.3 iteration 2 : demonstrate the required functionality 203

Barclay chap16.qxd 02/01/1904 9:58 PM Page 203

16.4 iteration 3 : provide user
feedback

Following a demonstration of the previous iteration, the librarian has asked for
more feedback from the system and that commonly occurring errors be han-
dled. She also wants the following use cases to be implemented:

● Remove a publication

● Display a particular publication

● Display selected publications

● Display a particular borrower

● Display selected borrowers

The aim of this iteration is to detect errors, give user feedback, and implement
the additional use-cases.

We begin by addressing erroneous user data input. The librarian has advised
us that users may attempt to:

● Add a duplicate publication

● Remove a nonexistent publication

● Register a duplicate borrower

● Remove a nonexistent borrower

● Lend a nonexistent publication

● Lend a publication already on loan

● Lend to a nonexistent borrower

● Return a nonexistent publication

● Return a publication that was not borrowed

● Display a nonexistent publication

● Display a nonexistent borrower

Clearly, we must check for these scenarios, take some appropriate action, and
then inform the user. We decide that most of the checks should be the respon-
sibility of the Library class. This is reasonable because it has methods to add,
lend, remove, and return Publications as well as those to register a Borrower.

204 C H A P T E R 16 Case Study: A Library Application (Inheritance)

Barclay chap16.qxd 02/01/1904 9:58 PM Page 204

We also decide that it is the Library’s responsibility to make a suitable tex-
tual message available to the Action class for display purposes. The idea is that
methods in the Library that are responsible for adding, removing, lending, or
returning Publications should return a String value to indicate the outcome.
Methods in the Library that register a borrower should do the same. The result-
ing code for the Library class is now:

class Library {

def addPublication(publication) {
def message
if(loanStock.containsKey(publication.catalogNumber)== false){

loanStock[publication.catalogNumber] = publication
message = ‘Publication added’

}
else

message = ‘Cannot add: publication already present’
return message

}

def removePublication(catalogNumber) {
def message
if(loanStock.containsKey(catalogNumber)== true){

def publication = loanStock[catalogNumber]
//
//note: use of safe navigation
publication.borrower?.detachPublication(publication)
publication.borrower = null
loanStock.remove(catalogNumber)
message = ‘Publication removed’

}
else

message = ‘Cannot remove: publication not present’

return message
}
def registerBorrower(borrower) {

def message
if(borrowers.containsKey(borrower.membershipNumber)== false){

borrowers[borrower.membershipNumber] = borrower
message = ‘Borrower registered’

}
else

message = ‘Cannot register: borrower already registered’

return message
}

16.4 iteration 3 : provide user feedback 205

Barclay chap16.qxd 02/01/1904 9:58 PM Page 205

def lendPublication(catalogNumber, membershipNumber) {
def message
if(loanStock.containsKey(catalogNumber)== true) {

def publication = loanStock[catalogNumber]
if(publication.borrower == null) {

if(borrowers.containsKey(membershipNumber) == true) {
def borrower = borrowers[membershipNumber]
borrower.attachPublication(publication)
message = ‘Publication loaned’

}
else

message = ‘Cannot lend: borrower not registered’
}
else

message = ‘Cannot lend: publication already on loan’
}
else

message = ‘Cannot lend: publication not present’

return message
}

def returnPublication(catalogNumber) {
def message
if(loanStock.containsKey(catalogNumber) == true) {

def publication = loanStock[catalogNumber]
if(publication.borrower != null){

publication.borrower.detachPublication(publication)
message = ‘Publication returned’

}
else

message = ‘Cannot return: publication not on loan’
}
else

message = ‘Cannot return: publication not present’
return message

}

// ------properties ------------------

def name
def loanStock = [:]
def borrowers = [:]

}

As usual, we construct some unit tests to assure us that all is well. Typical
examples of test methods in the LibraryTest class are:

206 C H A P T E R 16 Case Study: A Library Application (Inheritance)

Barclay chap16.qxd 02/01/1904 9:58 PM Page 206

// class LibraryTest
/**
* Test that the Library has one less Publication after removal of
* a Publication known to be in the Library
*/

void testRemovePublication_1() {
//
// bk1 is created in the fixture
lib.addPublication(bk1)
def pre = lib.loanStock.size()
lib.removePublication(bk1.catalogNumber)
def post = lib.loanStock.size()

assertTrue(‘one more publication than expected’, post == pre -1)
}

/**
* Test that the correct message is available to a client
*/

void testRemovePublication_2() {
//
// bk1 is created in the fixture
lib.addPublication(bk1)
def actual = lib.removePublication(bk1.catalogNumber)
def expected = ‘Publication removed’

assertTrue(‘unexpected message’, actual == expected)
}
/**
* Test that the correct message is available to a client
*/

void testRemovePublication_3() {
def actual = lib.removePublication(bk1.catalogNumber)
def expected = ‘Cannot remove: publication not present’

assertTrue(‘unexpected message’, actual == expected)
}

Notice that we make use of safe navigation in the removePublication
method. This means that we don’t have to make an explicit check that the
Publication to be removed is out on loan. If its borrower property is null, then
the message detachPublication will not be sent and a null pointer exception
will not be thrown.

We also decide that the Action class should be responsible for checking the
existence of a specified Publication or Borrower before attempting to display it.
It should inform the user about the nature of the problem encountered. This is
a reasonable decision since it is an Action object that interacts with the user.

16.4 iteration 3 : provide user feedback 207

Barclay chap16.qxd 02/01/1904 9:58 PM Page 207

To implement the remaining new use cases, we introduce two more flexible
display methods. Both make use of regular expressions with Strings, as dis-
cussed in Chapter 3. The first displaySelectedStock displays all Publications
whose catalog numbers start with the String entered by the user. The second is
similar since it displays all Borrowers whose membership numbers start with the
String entered. An outline of the updated Action class is now:

import console.*

class Action {

// ...

def removePublication() {
print(‘\nEnter publication catalog number: ‘)
def catalogNumber = Console.readLine()
def message = library.removePublication(catalogNumber)
println “\nResult: ${message}\n”

}

// ...

def displayOnePublication() {
print(‘\nEnter publication catalog number: ‘)
def catalogNumber = Console.readLine()

def publication = library.loanStock[catalogNumber]
if(publication != null) {

this.printHeader(‘One publication display’)
println publication

}
else {

println ‘\nCannot print: No such publication\n’
}

}

// ...

def displaySelectedStock() {
print(‘\nEnter start of catalog numbers: ‘)
def pattern = Console.readLine()
pattern = ‘^’ + pattern + ‘.*’
def found = false

this.printHeader(‘Selected publications display’)

208 C H A P T E R 16 Case Study: A Library Application (Inheritance)

Barclay chap16.qxd 02/01/1904 9:58 PM Page 208

library.loanStock.each { catalogNumber, publication -> if(catalogNumber =~ pattern){
found= true
println “ ${publication}” }

}

if(found == false)
println ‘\nCannot print: No such publications\n’

}

// ...

def displayOneBorrower() {
print(‘\nEnter borrower membership number: ‘)
def membershipNumber = Console.readLine()

def bor = library.borrowers[membershipNumber]
if(bor != null) {

this.printHeader(‘One borrower display’)
println bor
def publications = bor.borrowedPublications
publications.each { catalogNumber, publication -> println “ ${publication}” }

} else
println ‘\nCannot print: No such borrower\n’

}

// ...

def displaySelectedBorrowers() {
print(‘\nEnter start of membership numbers: ‘)
def pattern = Console.readLine()
pattern = ‘^’ + pattern + ‘.*’
def found = false

this.printHeader(‘Selected borrowers display’)
library.borrowers.each { membershipNumber, borrower ->

if(membershipNumber =~ pattern){
found = true
println borrower
def publications = borrower.borrowedPublications
publications.each { catalogNumber, publication -> println “ ${publication}” }

}
}

if (found == false)
println ‘\nCannot print: No such borrowers\n’

}

16.4 iteration 3 : provide user feedback 209

Barclay chap16.qxd 02/01/1904 9:58 PM Page 209

// ...

private printHeader(detail) {
println “\nLibrary: ${library.name}: ${detail}”
println ‘================\n’

}

// -----properties -----------------

private library

}

Note the introduction of the private printHeader method. The kind of modifi-
cation during iterative development is quite common. Provided that the change
is documented and tested, all should be well.

All that remains is to modify the previous Groovy script to present and action
a slightly different menu to the user. A partial listing is shown as Library 02.

import console.*

def readMenuSelection() {

// ...
println(‘3: Remove a publication\n’)

// ...
println(‘5: Display selected publications’)
println(‘6: Display one publication’)

// ...
println(‘11: Display selected borrowers’)
println(‘12: Display one borrower\n’)

// ...
print(‘\n\tEnter choice>>> ‘)
return Console.readString()

}

// make the Action object
def action = new Action(library : new Library(name : ‘Dunning’))

// make first selection
def choice = readMenuSelection()
while(choice != ‘0’) {

210 C H A P T E R 16 Case Study: A Library Application (Inheritance)

LIBRARY 02
A library of books
and journals with
error detection
and user feedback

Barclay chap16.qxd 02/01/1904 9:58 PM Page 210

if(choice == ‘1’) {
// ...

} else if(choice == ‘3’) {
action.removePublication() // Remove a publication
// ...

} else if(choice == ‘5’) {
action.displaySelectedStock() // Display selected stock

} else if(choice == ‘6’) {
action.displayOnePublication() // Display one publication
// ...

} else if(choice == ‘11’) {
action.displaySelectedBorrowers() // Display selected borrowers

} else if(choice == ‘12’) {
action.displayOneBorrower() // Display one borrower
// ...

// next selection
choice = readMenuSelection()

}
println(‘\nSystem closing\n’)

We are now able to conduct functional tests based on the use-cases. An extract
from a typical session with user data input shown emboldened and italized is:

// ...

0: Quit

1: Add new book
2: Add new journal
3: Remove a publication

4: Display stock
5: Display selected publications
6: Display one publication
7: Display publications available for loan
8: Display publications on loan

9: Register new borrower
10: Display all borrowers
11: Display selected borrowers
12: Display one borrower

13: Lend one publication
14: Return one publication

Enter choice>>> 2

Enter journal catalog number: 124

16.4 iteration 3 : provide user feedback 211

Barclay chap16.qxd 02/01/1904 9:58 PM Page 211

Enter journal title: JOOP
Enter journal editor: S SSmith

Result: Publication added

// Present menu to the user

Enter choice>>> 4

Library: Dunning: All publications display
=============

Book: 111: Groovy by: K Barclay
Journal: 124: JOOP edited by: S Smith
Book: 123: OOD by: J Savage

// Present menu to the user

Enter choice>>> 5

Enter start of catalog numbers: 12

Library: Dunning: Selected publications display
=============

Journal: 124: JOOP edited by: S Smith
Book: 123: OOD by: J Savage

// Present menu to the user

Enter choice>>> 0

System closing

At this point, we consider this iteration to be complete.

◆

16.5 iteration 4: enforce
constraints

With graphical notations such as the UML, it is often difficult to record the
finer details of a system’s specification. The aim of this iteration is to demon-
strate how Groovy can help us do this.

We can make assertions about our models by adding textual annotations to
model elements. For example, Figure 16.3 is a class diagram that illustrates the
constraint placed on the Borrower class such that no Borrower may have more
than a certain number of Publications on loan.

212 C H A P T E R 16 Case Study: A Library Application (Inheritance)

Barclay chap16.qxd 02/01/1904 9:58 PM Page 212

The text in the note describes the constraint. It may be informal English,
as is the case here, or it may be stated more formally. In any event, we must
ensure in our implementation that this constraint is not violated. To accom-
plish this, we have updated the Borrower class to have a public static prop-
erty LIMIT, initialized with the maximum number of Publications that may
be on loan:

class Borrower {

// ...

// -----properties ----------------
def membershipNumber
def name
static public final LIMIT = 4
private borrowedPublications = [:]

}

We can then make checks in the Library’s methods so that we don’t exceed that
limit. A typical check in the lendPublication method is:

16.5 iteration 4: enforce constraints 213

Borrowerc

membershipNumber: StringP

name: StringP

LIMIT: intS

PublicationcA
- borroweredPublications

*

- borrower

0..1

Size of borrowedPublications must not
exceed LIMIT

FIGURE 16.3 A constraint shown as a textual annotation.

//class: Library
def lendPublication(catalogNumber, membershipNumber) {

def message
if(loanStock.containsKey(catalogNumber)== true) {

def publication = loanStock[catalogNumber]
if(publication.borrower == null) {

if(borrowers.containsKey(membershipNumber)== true) {
def borrower = borrowers[membershipNumber]
if(borrower.borrowedPublications.size() < Borrower.LIMIT) {

borrower.attachPublication(publication)
this.checkPublicationBorrowerLoopInvariant
(‘Library.lendPublication’)
message = ‘Publication loaned’

}

Barclay chap16.qxd 02/01/1904 9:58 PM Page 213

else
message = ‘Cannot lend: borrower over limit’

}
else

message = ‘Cannot lend: borrower not registered’
}
else

message = ‘Cannot lend: publication already on loan’
}
else

message = ‘Cannot lend: publication not present’

return message
}

As usual, we update the Library’s unit tests to confirm that the code executes as
expected. For example, we have:

214 C H A P T E R 16 Case Study: A Library Application (Inheritance)

// class: LibraryTest
/**
* Test that the correct message is available to a client
*/

void testLendPublication_7() {
def bk4 = new Book(catalogNumber : ‘444’, title : ‘C++’, author : ‘S Smith’)
def bk5 = new Book(catalogNumber : ‘555’, title : ‘C’, author :‘A Cumming’)
def bk6 = new Book(catalogNumber : ‘666’, title : ‘C#’, author : ‘I Smith’)
//
// bk1 and bk2 are created in the fixture
def publicationList = [bk1, bk2, bk4, bk5, bk6]

lib.registerBorrower(bor1)

def actual
publicationList.each{ publication ->

lib.addPublication(publication)
actual = lib.lendPublication(publication.catalogNumber, bor1.membershipNumber)

}

def expected = ‘Cannot lend: borrower over limit’

assertTrue(‘unexpected message’, actual == expected)

}

Since Groovy’s testing system is so easy to use, it encourages us to do more test-
ing. For example, we can impose constraints on the relationships that exist
among objects rather than just one object in isolation. These relational con-

Barclay chap16.qxd 02/01/1904 9:58 PM Page 214

straints start at some object and then follow architectural links to other objects
before applying some test. For example, we can assert that if we navigate from
any Publication on loan to its Borrower, then the borrowedPublications attrib-
ute of that Borrower must contain a reference to the Publication with which we
started. In other words, a Publication on loan and its Borrower must be con-
sistent with each other.

This is an example of a loop invariant. Although it does not concern us here,
loop invariants are widely used in formal approaches to software development
where proof of correctness is important. For our purposes, we just need to
demonstrate that if we start at some object and follow a sequence of object links,
that we then arrive back at the same object. The object diagram of Figure 16.4
illustrates this.

16.5 iteration 4: enforce constraints 215

: Borrower : Book

:MapEntry

111

key value

borrowedPublications : Map

FIGURE 16.4 A Publication–Borrower loop invariant.

//class: Library
private checkPublicationBorrowerLoopInvariant(methodName) {

def publications = loanStock.values().asList()

def onLoanPublications = publications.findAll{ publication -> publication.borrower != null }

def allOK = onLoanPublications.every { publication ->
publication.borrower.borrowedPublications.containsKey(publication.catalogNumber)

}

The figure shows that if we start from a given Book and navigate to its
Borrower, then we should find that the Book’s catalog number is a key in the
Borrower’s map of borrowed publications. For the model to be consistent, the
associated value for that key should be the Book with which we started. We code
the invariant check in Groovy as:

Barclay chap16.qxd 02/01/1904 9:58 PM Page 215

if(allOK == false) {
throw new Exception(“${methodName}: Invariant failed”)

}
}

Since the violation of an invariant indicates that a serious error has
occurred, we terminate the system by throwing an Exception with a suitable
error message. Notice that we do not declare that the method throws an
Exception (see Appendix B).

As before, we only check methods that are likely to cause a violation. In this
case, it is just the method lendPublication.

216 C H A P T E R 16 Case Study: A Library Application (Inheritance)

// class: Library
def lendPublication(catalogNumber, membershipNumber) {

// ...
if(borrower.borrowedPublications.size() < Borrower.LIMIT) {

borrower.attachPublication(publication)
this.checkPublicationBorrowerLoopInvariant(‘Library.lendPublication’)
message = ‘Publication loaned’

} else
message = ‘Cannot lend: borrower over limit’

// ...
}

Before we finish, we must create at least one unit test to check that the
expected Exception is thrown. This turns out to be problematic since we have
coded the attachPublication method in the Borrower class to ensure that the
loop invariant is not violated.

One solution is to create a MockBorrower subclass whose redefined
attachPublication method has the required abnormal behavior:

class MockBorrower extends Borrower{

def attachPublication(publication) {
//
// Normal behavior is commented out
// borrowedPublications[publication.catalogNumber] = publication
publication.attachBorrower(this)

}
}

We create a MockBorrower object in the unit test where a Borrower object would
normally be expected.

Barclay chap16.qxd 02/01/1904 9:58 PM Page 216

Note that the method fail reports a failure only if the Exception has not been
thrown. The MockBorrower class is an example of the mock object testing design pat-
tern (Massol, 2003). It avoids polluting normal code with abnormal behaviors.

Happily, all of the tests in the runAllTests script pass. Therefore, at this
point, we conduct functional tests by executing a Groovy script from the previ-
ous iteration. As expected, no problems occur and we consider this iteration to
be finished.

16.6 exercises

1. The validation of data input by a user is an important part of any interac-
tive system. Amend the Action class of the last iteration to validate the
following:
(a) A borrower’s name should only contain letters of the alphabet and

each part of the name must start with an upper-case letter, for exam-
ple, K Barclay.

(b) A borrower’s membership number should consist of only digits, for
example, 1234.

(c) A publication’s catalog number should consist of four digits followed
by a lower-case letter, for example, 0012a.

2. The specification for the case study indicated that, at some point in the
future, the library will hold other stock items such as videos and CDs.
(a) Modify the class diagram of Figure 16.4 to include videos and CDs.

16.6 exercises 217

// class LibraryTest {
void testCheckPublicationBorrowerLoopInvariant() {

def mockBorrower = new MockBorrower(membershipNumber : ‘1234’, name : ‘P Thompson’)
lib.registerBorrower(mockBorrower)
lib.addPublication(bk1)
lib.addPublication(bk2)

try {
lib.lendPublication(bk1.catalogNumber, mockBorrower.membershipNumber)
fail(‘Expected: Library.testPublicationBorrowerLoop: Invariant failed’)

} catch(Exception e){}
}

// ...
}

Barclay chap16.qxd 02/01/1904 9:58 PM Page 217

(b) Using the Groovy script of the last iteration and its supporting classes,
develop an iteration that has books, journals, and videos in the
library’s loan stock. You can assume that a video has a catalog number,
a title, and a duration that is measured in minutes.

3. Discuss the decisions made or approaches taken in the case study that
made Exercise 2 easier or harder to accomplish.

4. (a) Implement the constraint that every Publication on loan to a
Borrower is from the loan stock of the Library at which the borrower
is registered.

(b) Devise a suitable unit test for the constraint implemented in the pre-
ceding exercise.

5. (a) In Iteration 4, we have shown how to implement the
Publication–Borrower invariant loop. Now, prepare an implementa-
tion for the Borrower–Publication invariant loop. It should start from
each Borrower, navigate to each of its borrowed Publications, and
check that it is the Borrower of each Publication.

(b) Devise a suitable unit test for the constraint implement in the preced-
ing exercise.

6. In this chapter, we have created and thrown an Exception when a con-
straint is broken. However, there are other occasions on which it might be
useful to do the same.
(a) Place constraints on a borrower’s name, membership number, and

publication catalog number to conform to the changes required in
Exercise 1.

(b) Implement these constraints by throwing an Exception.

(c) Discuss the advantages and disadvantages of the approaches used in
this exercise and in Exercise 1.

218 C H A P T E R 16 Case Study: A Library Application (Inheritance)

Barclay chap16.qxd 02/01/1904 9:58 PM Page 218

219

C H A P T E R 17
persistence

In this chapter, we are concerned with persisting our data in a relational database
(we assume a familiarity with the Structured Query Language (SQL) (Beaulieu,
2005; Molinaro, 2006). For the Java developer, this would involve program-
ming to the Java Database Connectivity (JDBC) API. While ultimately, so too
does the Groovy programmer, much of the burden of developing with this API
is shifted to the Groovy framework, which makes light of the work involved in
manipulating sets of data extracted from a database. For example, iterators and
closures allow us to easily traverse the rows of a database table.

17.1 s imple queries

Consider a database with a single table having the details of a number of bank
accounts. The table, known as accounts, might appear as shown in Figure 17.1.
Each row represents a single account. The columns denote the account number
and its current balance.

An API under the package name groovy.sql provides Groovy with simple
access to SQL. The API makes extensive use of iterators and closures for manip-
ulating the results from SQL queries. Example 01 demonstrates how we can
query all the rows in the accounts table and display the details. For guidance on
setting up the database, see Appendix A and the book website.

import groovy.sql.*

def DB = ‘jdbc:derby:accountDB’
def USER=‘’

EXAMPLE 01
Simple SQL query

Barclay chap17.qxd 02/01/1904 9:59 PM Page 219

def PASSWORD=‘’
def DRIVER=‘org.apache.derby.jdbc.EmbeddedDriver’

// Connect to database
def sql=Sql.newInstance(DB, USER, PASSWORD, DRIVER)

// Iterate over the result set
println ‘Accounts’
println ‘ Number Balance ‘
println ‘+-----+-----+’
sql.eachRow(‘select * from accounts’) { acc ->

printf(‘⎪ %−8s ⎪ %−8d ⎪\n’, [acc.number, acc.balance])
}
println ‘+-----+-----+’

Class Sql includes the method newInstance, which is used to connect to the required
database. In this case, we create a Sql instance pointing to a Cloudscape database (see
http://db.apache.org/derby/) (see Appendix A) on the local system. The database is
identified by the JDBC connection URL jdbc:derby:accountDB. The driver class
name is org.apache.derby.jdbc.EmbeddedDriver. The more significant part of the
code follows next. The iterator method eachRow expects two parameters, namely,
a String representing the SQL query and a closure to process each row from the
result. Here, the closure simply prints each account number and balance.

The output from this program is:

Accounts
Number Balance

+--------------+----------------+
ABC123 1200
DEF456 400

+--------------+----------------+

◆

The next example performs the same query on the same database table. On
this occasion, we use the results to create Account objects and add them to a
list. Then, we simply display each object.

220 C H A P T E R 17 Persistence

accounts

number
ABC123 1200

DEF456 400

balance

... ...

FIGURE 17.1 Accounts table.

Barclay chap17.qxd 02/01/1904 9:59 PM Page 220

import groovy.sql.*

class Account {

String toString() {
return “Account: ${number} ${balance}”

}
// -----properties -----------------

def number
def balance

}

def DB=‘jdbc:derby:accountDB’
def USER=‘’
def PASSWORD=‘’
def DRIVER=‘org.apache.derby.jdbc.EmbeddedDriver’

// Collection of Account objects
def accounts=[]

// Connect to database and make query
def sql=Sql.newInstance(DB, USER, PASSWORD, DRIVER)
sql.eachRow(‘select * from accounts’) { acc ->

accounts << new Account(number : acc.number, balance : acc.balance)
}

// Display accounts
accounts.each { acc ->

println “${acc}”
}

The output reveals that the Account objects are correctly created:

Account: ABC123 1200
Account: DEF456 400

◆

17.2 relations

Consider a database with tables for both banks and their accounts. Once again,
the accounts have a number and a balance. To identify the bank with which an
account is associated, the accounts table also includes a foreign key. This
uniquely identifies the bank and is achieved by including an identifier column
into the bank table, acting as its primary key. Following this scheme, we also give

17.2 relations 221

EXAMPLE 02
Creating objects

Barclay chap17.qxd 02/01/1904 9:59 PM Page 221

each account its own unique identifier. The tables might appear as in Figure 17.2.
The banks table has the column id as its primary key. The accounts table is also
given an id primary key. In the accounts table, the column bankID is the foreign
key to identify the bank with which the account is opened.

Example 03 illustrates some processing of the database. The first two
queries simply tabulate the data in the two tables. The final query includes a
where clause, selecting only those accounts with the ID RBS bank.

import groovy.sql.*

def DB = ‘jdbc:derby:bankDB’
def USER=‘’
def PASSWORD=‘’
def DRIVER=‘org.apache.derby.jdbc.EmbeddedDriver’

// Connect to database
def sql=Sql.newInstance(DB, USER, PASSWORD, DRIVER)

// Query the bank table
println ‘Banks’
println ‘ Name ‘
println ‘+-----------------+’
sql.eachRow(‘select * from banks’) { bk ->

printf(‘⎪ %−30s ⎪\n’, [bk.name])
}
println ‘+-----------------+’
println()

// Query the accounts table
println ‘Accounts’

222 C H A P T E R 17 Persistence

banks

id
RBS Rich Bank of Scotland

BOS Banque of Scotland

name

... ...

accounts

id
1

3

2

...

RBS

BOS

bankID

RBS

ABC123

GHI789

number

DEF456

1200

600

balance

400

FIGURE 17.2 Relations.

EXAMPLE 03
Relations

Barclay chap17.qxd 02/01/1904 9:59 PM Page 222

println ‘ Number Balance Bank ‘
println ‘+-----+-----+---+’
sql.eachRow(‘select * from accounts’) { acc ->

printf(‘⎪ %−8s ⎪ %−8d ⎪ %−4s ⎪\n’, [acc.number, acc.balance, acc.bankID])
}
println ‘+-----+-----+---+’
println()

// Find the RBS accounts
println ‘RBS accounts’
println ‘ Number Balance ‘
println ‘+-----+-----+’
sql.eachRow(‘select * from accounts where bankID=?’, [‘RBS’]) { acc ->

printf(‘⎪ %−8s ⎪ %−8d ⎪\n’, [acc.number, acc.balance])
}
println ‘+-----+-----+’
println()

Observe the statement:

sql.eachRow(‘select * from accounts where bankID=?’, [‘RBS’]) ...

◆

The where clause selects those accounts that have RBS as the bankID. In this exam-
ple, the ? symbol is replaced by the value from the List. If the where clause includes
more than one ? symbol, they are replaced, in order, by each value from the List.

The output produced by this application is shown in the following text. We
see the two banks, the three accounts, and the two accounts associated with the
RBS bank.

Banks
Name

+-----------------------------+
Rich Bank of Scotland
Banque of Scotland

+-----------------------------+

Accounts
Number Balance Bank

+-------------------+----------------+---------------+
ABC123 1200 RBS
DEF456 400 RBS
GHI789 600 BOS

+-------------------+----------------+---------------+

17.2 relations 223

Barclay chap17.qxd 02/01/1904 9:59 PM Page 223

RBS accounts
Number Balance

+--------------+------------+
ABC123 1200
DEF456 400

+--------------+------------+

17 .3 database updates

A database table can be updated with the SQL insert statement. This is used
to inject a new row into the named table. In the same manner, the SQL delete
statement is used to remove rows from a named table. Both are demonstrated
in Example 04. Here, we use the original account database from the first three
examples. In the sample code, we add two new rows to the accounts table, and
then immediately remove them, leaving the database unchanged. At each stage,
we print the content of the accounts table to monitor the effects.

import groovy.sql.*

def DB = ‘jdbc:derby:accountDB’
def USER=‘’
def PASSWORD=‘’
def DRIVER=‘org.apache.derby.jdbc.EmbeddedDriver’

def displayAccounts(banner, sql) {
println banner
sql.eachRow(‘select * from accounts’) { acc ->

println “ Account: ${acc.number} ${acc.balance}”
}
println()

}

// Connect to database
def sql=Sql.newInstance(DB, USER, PASSWORD, DRIVER)

// Iterate over the result set
displayAccounts(‘Initial content’, sql)

// Now insert a new row...
sql.execute(“insert into accounts(number, balance)values(‘GHI789’, 600)”)

224 C H A P T E R 17 Persistence

EXAMPLE 04
Updates

Barclay chap17.qxd 02/01/1904 9:59 PM Page 224

// ...and another
def newNumber=‘AAA111’
def newBalance=1600
sql.execute(“insert into accounts(number, balance) values(${newNumber}, ${newBalance})”)

// Now see what we have
displayAccounts(‘After inserts’, sql)

// Restore original
[‘GHI789’, ‘AAA111’].each { accNumber ->

sql.execute(‘delete from accounts where number=?’,[accNumber])
}

// Now see that they have gone
displayAccounts(‘After deletes’, sql)

The output is:

17.3 database updates 225

Initial content
Account: ABC123 1200
Account: DEF456 400

After inserts
Account: ABC123 1200
Account: DEF456 400
Account: GHI789 600
Account: AAA111 1600

After deletes
Account: ABC123 1200
Account: DEF456 400

◆

The groovy.sql package also includes the DataSet class. This class is an exten-
sion of the Sql class and acts as an object representation for a database table.
With a DataSet, the programmer can iterate over the rows with the each
method, add new rows with the add method, and perform any of the inherited
methods from its superclass Sql such as execute, which obeys a given piece of
SQL. This class type is shown in Example 05. It repeats the same logic as in
Example 04.

import groovy.sql.*

def DB = ‘jdbc:derby:accountDB’

EXAMPLE 05
DataSet updates

Barclay chap17.qxd 02/01/1904 9:59 PM Page 225

def USER=‘’
def PASSWORD=‘’
def DRIVER=‘org.apache.derby.jdbc.EmbeddedDriver’

def displayAccounts(banner, dSet) {
println banner
dSet.each { acc ->

println “ Account: ${acc.number} ${acc.balance}”
}
println()

}

// Connect to database
def sql=Sql.newInstance(DB, USER, PASSWORD, DRIVER)
def accounts=sql.dataSet(‘accounts’)

// Iterate over the data set
displayAccounts(‘Initial content’, accounts)

// Now insert a new row...
accounts.add(number : ‘GHI789’, balance : 600)

// ...and another
def newNumber=‘AAA111’
def newBalance=1600
accounts.add(number : newNumber, balance : newBalance)

// Now see what we have
displayAccounts(‘After inserts’, accounts)

// Restore original
[‘GHI789’, ‘AAA111’].each { accNumber ->

accounts.execute(‘delete from accounts where number=?’,[accNumber])
}

// Now see that they have gone
displayAccounts(‘After deletes’, accounts)

◆

The final example in this section operates with the database containing the
Banks and Accounts tables. As in the previous example, we add a new bank, then
a new account associated with that bank, and then we undo the updates and
leave the database unchanged.

226 C H A P T E R 17 Persistence

Barclay chap17.qxd 02/01/1904 9:59 PM Page 226

import groovy.sql.*

def DB = ‘jdbc:derby:bankDB’
def USER=‘’
def PASSWORD=‘’
def DRIVER=‘org.apache.derby.jdbc.EmbeddedDriver’

def displayBanks(banner, dSet) {
println banner
dSet.each { bk ->

println “ Bank: ${bk.id} ${bk.name}”
}
println()

}

def displayAccounts(banner, dSet) {
println banner
dSet.each { acc ->

println “ Account: ${acc.id} ${acc.bankID} ${acc.number} ${acc.balance}”
}
println()

}

// Connect to database
def sql=Sql.newInstance(DB, USER, PASSWORD, DRIVER)
def banks=sql.dataSet(‘banks’)
def accounts=sql.dataSet(‘accounts’)

// Query the bank table
displayBanks(‘Banks’, banks)

// Query the account table
displayAccounts(‘Accounts’, accounts)

// Now add a new bank...
banks.add(id : ‘CB’, name : ‘Clydebank’)

// ...and check it is there
displayBanks(‘Banks (after add)’, banks)

// Now add a new account to this new bank...
accounts.add(bankID : ‘CB’, number : ‘AAA111’, balance : 1600)

// ...and check it is there...
displayAccounts(‘Accounts (after add)’, accounts)

// ...then remove it...
accounts.execute(‘delete from accounts where number=?’, [‘AAA111’])

17.3 database updates 227

EXAMPLE 06
Relation updates

Barclay chap17.qxd 02/01/1904 9:59 PM Page 227

// ...and check it is gone
displayAccounts(‘Accounts (after delete)’, accounts)

// Now remove the new bank...
banks.execute(‘delete from banks where id=?’, [‘CB’])

// ...and check it is gone
displayBanks(‘Banks (after delete)’, banks)

The output is:

Banks
Bank: RBS Rich Bank of Scotland
Bank: BOS Banque of Scotland

Accounts
Account: 1 RBS ABC123 1200
Account: 2 RBS DEF456 400
Account: 3 BOS GHI789 600

Banks (after add)
Bank: RBS Rich Bank of Scotland
Bank: BOS Banque of Scotland
Bank: CB Clydebank

Accounts (after add)
Account: 1 RBS ABC123 1200
Account: 2 RBS DEF456 400
Account: 3 BOS GHI789 600
Account: 5 CB AAA111 1600

Accounts (after delete)
Account: 1 RBS ABC123 1200
Account: 2 RBS DEF456 400
Account: 3 BOS GHI789 600

Banks (after delete)
Bank: RBS Rich Bank of Scotland
Bank: BOS Banque of Scotland

◆

17.4 objects from tables

Groovy is an object-oriented scripting language. One problem that arises is how
to store objects for use at a later time by the same or another application. Using
a relational database to persist our data is a natural and obvious choice.
However, it poses the question of how we map the data in relational tables to

228 C H A P T E R 17 Persistence

Barclay chap17.qxd 02/01/1904 9:59 PM Page 228

objects. In this and the next sections, we develop a simple scheme for this
mapping. In the final section, we use Groovy as a “glue” technology and exploit
an established framework for this purpose.

We consider how to create Account objects from the accounts table in the
accountDB database used in the first two examples of this chapter. We might sim-
ply consider using the eachRow iterator and create Account objects from each row
in the table. However, given that a database may contain various tables with var-
ious structures, we require a more generic scheme for creating objects from tables.

Consider the abstract class SqlQuery shown in the listing below. Its two
properties are an Sql object and a string representing an SQL query to retrieve
all the elements in a table. The class employs the template method (Gamma et al.,
1995) mapRow to deliver an object of the required type from a single row from
the database table. The execute method uses mapRow to deliver a List of objects
constructed from all the rows of the table. This is achieved by invoking the rows
method on the sql object, passing the query string as parameter. This produces
a List of the result sets from the query. Each entry is then processed to convert
each row into an object.

abstract class SqlQuery {

def SqlQuery(sql, query) {
this.sql=sql
this.query=query

}

def execute() {
def rowsList=sql.rows(query)
def results=[]
def size=rowsList.size()
0.upto(size -1) { index ->

results << this.mapRow(rowsList[index])
}
return results

}

def abstract mapRow(row)

// -----properties -----------------

def sql
def query

}

We can now specialize this generic solution to retrieve a List of Account objects
formed from the rows in the accounts table, which is the class AccountQuery:

17.4 objects from tables 229

Barclay chap17.qxd 02/01/1904 9:59 PM Page 229

class AccountQuery extends SqlQuery {

def AccountQuery(sql) {
super(sql, ‘select * from accounts’)

}

def mapRow(row) {
def acc=new Account(number : row.getProperty(‘number’),

balance : row.getProperty(‘balance’))
return acc

}
}

Method mapRow has a single GroovyRowResult (see GDK) parameter. It represents
a single row from the table. We can access the columns of this row by name or
by index using, respectively, the methods getProperty and getAt. Here, we use
getProperty to access the individual columns and to initialize an Account object.

Finally, Example 07 illustrates how we recreate the Account objects from the
data in the accounts table, and then display their properties.

import groovy.sql.*

def DB = ‘jdbc:derby:accountDB’
def USER=‘’
def PASSWORD=‘’
def DRIVER=‘org.apache.derby.jdbc.EmbeddedDriver’

// Connect to database
def sql=Sql.newInstance(DB, USER, PASSWORD, DRIVER)

// Prepare the query object
def accQuery=new AccountQuery(sql)

// Get the Accounts
def accs=accQuery.execute()

accs.each { acc ->
println “${acc}”

}

◆

17.5 inheritance

Where an application model includes inheritance, we need to be able to
represent every concrete type in the database. Consider the bank account class

230 C H A P T E R 17 Persistence

EXAMPLE 07
Objects from
tables

Barclay chap17.qxd 02/01/1904 9:59 PM Page 230

hierarchy shown in Example 04 of Chapter 14. Classes CurrentAccount and
DepositAccount are the concrete classes we wish to persist. To handle both types
of accounts, one solution is to develop a database table with all the properties
used in all subclasses. Here, this would include the account number, balance,
overdraft limit, and interest rate. To distinguish a row for the two types of
accounts, we include an additional column in our table to denote the account
type (Figure 17.3). Example 08 illustrates reading such a database, constructing
objects, and displaying them.

import groovy.sql.*

def DB = ‘jdbc:derby:specialDB’
def USER=‘’
def PASSWORD=‘’
def DRIVER=‘org.apache.derby.jdbc.EmbeddedDriver’

// Connect to database
def sql=Sql.newInstance(DB, USER, PASSWORD, DRIVER)

// Prepare the query object
def accQuery=new SpecialAccountQuery(sql)

// Get the Accounts
def accs=accQuery.execute()

accs.each { acc ->
println “${acc}”

}

◆

Once again, we inherit from class SqlQuery. This time, the method mapRow in
the class SpecialAccountQuery needs to distinguish the kind of Account object
to create, using the column type in the table.

17.5 inheritance 231

EXAMPLE 08
Inheritance

accounts

type

CURRENT

DEPOSIT

CURRENT

...

AAA111

CCC333

number

BBB222

2000

4000

balance

3000

400

null

overdraftlimit

800

...

null

4

interestrate

null

FIGURE 17.3 Accounts table.

Barclay chap17.qxd 02/01/1904 9:59 PM Page 231

class SpecialAccountQuery extends SqlQuery {

def SpecialAccountQuery(sql) {
super(sql, ‘select * from accounts’)

}

def mapRow(row) {
def acc=null

if(row.getProperty(‘type’) == ‘CURRENT’)
acc=new CurrentAccount(number : row.getProperty(‘number’),

balance : row.getProperty(‘balance’), overdraftLimit :row.getProperty(‘overdraftlimit’))
else

acc=new DepositAccount(number : row.getProperty(‘number’),
balance : row.getProperty(‘balance’), interestRate : row.getProperty (‘interestrate’))

return acc
}

}

232 C H A P T E R 17 Persistence

17.6 the spring framework

The Spring framework (Johnson et al., 2005; Wall et al., 2004) is an important
open- source application development framework designed to make Java/J2EE
development easier and more productive. Spring aims to help structure complete
applications. A detailed discussion of Spring is beyond the scope of this book.
The reader is referred to the references. However, as we develop ever more com-
plex applications, it is worth considering exploiting this framework.

One advantage of adopting Spring is to gain leverage from its support for
the Data Access Object (DAO) design pattern. The primary purpose of the
DAO pattern is to separate issues of persistence from the general application
classes and application logic. Like our earlier discussion of MVC, the DAO
pattern separates knowledge of the database technology used from the remainder
of the code.

The problem that we model is described by the class diagram shown in
Figure 17.4. A one-to-many relationship exists between a Bank and its Accounts.
The Account class includes the number and balance properties with matching
getters and setters.

Figure 17.5 describes the accounts table used to maintain the data for the
various accounts. It is organized in a manner similar to that described in the
previous section. The table is included in the accountDB database.

Barclay chap17.qxd 02/01/1904 9:59 PM Page 232

Spring uses a DataSource object to obtain a connection to the database.
Specifically, we shall use a DriverManagerDataSource implementation that is
useful for test or standalone environments. An instance is created with code
such as:

17.6 the spring framework 233

- accounts

*
Bankc Accountc

FIGURE 17.4 Banking application.

accounts

... ...

AAA111

CCC333

number

BBB222

2000

4000

balance

3000

FIGURE 17.5 Accounts table.

ds=new DriverManagerDataSource(driverClassName : ‘org.apache.derby.jdbc.EmbeddedDriver’,
url : ‘jdbc:derby:accountDB’, username : ‘’, password : ‘’)

To execute SQL queries and map the results to Groovy classes, Spring provides
a set of classes in the org.springframework.jdbc.object package. For example,
the class MappingSqlQuery is used to run a query and obtain objects from the
result. Consider the class AccountQuery that extends the MappingSqlQuery class:

import java.sql.*

import org.springframework.jdbc.object.*

class AccountQuery extends MappingSqlQuery {

def AccountQuery(ds) {
super(ds, ‘select * from accounts’)
this.compile()

}
protected Object mapRow(ResultSet rs, int rowNumber) {

def acc=new Account(number : rs.getString(‘number’), balance : rs.getInt(‘balance’))

return acc
}

}

Barclay chap17.qxd 02/01/1904 9:59 PM Page 233

The central idea of the superclass MappingSqlQuery is that we specify an SQL
query that can be run with the execute method. The query is specified in the
constructor of the subclass AccountQuery. Execution of this query produces a
database ResultSet. The subclass must also include an implementation for the
(protected; see Appendix I) mapRow method to map the data from each row of
the query result into an object that represents the entities retrieved by the query.
Hence, the method execute will return a List of Account objects.

In a similar manner, the class AccountInsert is used to insert a new row into
the database table:

import java.sql.*

import org.springframework.jdbc.object.*

import org.springframework.jdbc.core.*

class AccountInsert extends SqlUpdate {

def AccountInsert(ds) {
super(ds, ‘insert into accounts(number, balance) values(?, ?)’)
this.declareParameter(new SqlParameter(Types.VARCHAR))
this.declareParameter(new SqlParameter(Types.INTEGER))
this.compile()

}
}

We now create an interface that describes the functionality required by our
DAO. In this simple example, we retrieve all the Accounts from the database and
add a new Account to the database:

interface BankDaoIF {

def abstract getAccounts()
def abstract addAccount(acc)

}

The class BankDaoJdbc is the JDBC implementation for this interface. This is
readily achieved by using the AccountQuery and the AccountInsert classes.
For example, method getAccounts simply invokes the execute method on an
instance of the AccountQuery class and delivers a List of Accounts.

import org.springframework.jdbc.object.*

import org.springf0ramework.jdbc.core.*

class BankDaoJdbc implements BankDaoIF {

234 C H A P T E R 17 Persistence

Barclay chap17.qxd 02/01/1904 9:59 PM Page 234

def getAccounts() {
def aQuery=new AccountQuery(dataSource)
return aQuery.execute()

}

def addAccount(acc) {
def params=[acc.number, acc.balance]
def aInsert=new AccountInsert(dataSource)
aInsert.update(params as Object[])

}

// -----properties -----------------

def dataSource
}

We only have to change the Bank class to take advantage of the database
persistence. We add a reference to a BankDaoIF, which the Bank class constructor
initializes. The constructor also invokes the getAccounts method on the DAO and
initializes its accounts property with the List. As a simple illustration, we also
include the method openAccount. Its implementation uses the method addAccount
on the DAO and then appends the account to the accounts collection.

class Bank {

def Bank(name, dao) {
this.name=name
this.dao=dao

accounts=dao.getAccounts()
}

def openAccount(account) {
dao.addAccount(account)
accounts << account

}

// -----properties -----------------

def name
def accounts

def dao
}

Finally, we develop a simple illustrative script. Here, we create a Bank object that
is initialized with the content of the database, open a new account, and then

17.6 the spring framework 235

Barclay chap17.qxd 02/01/1904 9:59 PM Page 235

236 C H A P T E R 17 Persistence

tabulate all the accounts in the Bank. If we were to run this script to only
perform the update, then run a second version which performs the display, we
would see the persistence in action.

import groovy.sql.*

import org.springframework.jdbc.datasource.*

def DB = ‘jdbc:derby:accountDB’
def USER=‘’
def PASSWORD=‘’
def DRIVER=‘org.apache.derby.jdbc.EmbeddedDriver’

def displayBank(bk) {
println “Bank: ${bk.name}”
println ‘====================’

bk.accounts.each { account -> println “ ${account}” }
println()

}

def ds=new DriverManagerDataSource(driverClassName : DRIVER, url : DB,
username : USER, password : PASSWORD)

def dao=new BankDaoJdbc(dataSource : ds)
def bk=new Bank(‘Napier’, dao)

def da=new Account(number : ‘DDD444’, balance : 5000)
bk.openAccount(da)

// now display everything
displayBank(bk)

The output produced is:

Bank: Napier
====================

Account: AAA111; 2000
Account: BBB222; 3000
Account: CCC333; 4000
Account: DDD444; 5000

◆

EXAMPLE 09
Spring framework

Barclay chap17.qxd 02/01/1904 9:59 PM Page 236

17.7 exercises

1. Using Example 01 as a template, produce a list of those accounts whose
balance exceeds 1000. Place a simple if statement within the eachRow
iterator.

2. Repeat the first exercise but this time use the SQL select statement to
retrieve the desired accounts.

3. Our usage of the method eachRow involved a query String and the clo-
sure representing the action. This method is overloaded with a second
version eachRow(query, params, closure) in which params is a List of
parameter values in the manner of Example 03. Use this style of eachRow
to list all accounts with a balance above a value given as program input.

4. An alternative scheme to handle inheritance is to use one table per
class. Hence, for the example in Section 17.5, we might have three
tables: accounts, currentaccounts, and depositaccounts. Each table
has the same information as the properties of the corresponding classes.
Of course, we must use foreign keys in the currentaccounts and
depositaccounts tables to link with the data from the accounts table.
Develop a program to read such a database and tabulate the details of the
current and deposit accounts.

5. Develop further the example given in Section 17.6 to have an account
class hierarchy similar to that shown in Chapter 14.

17.7 exercises 237

Barclay chap17.qxd 02/01/1904 9:59 PM Page 237

This page intentionally left blank

239

C H A P T E R 18
case study: a l ibrary
application ⁽persistence⁾

In this chapter, we extend the final iteration of the application developed in
Chapter 16 so that the library, its borrowers, and publications (the domain
model) persist in a database. Earlier, we made use of an Action object to imple-
ment a model–view–controller (MVC) architecture and, as a consequence, keep
the domain model separate from the user interaction code. In this case study,
we introduce a data access object (DAO) to keep the domain model separate
from database persistence code. It is implemented with the Spring framework
and the Cloudscape DBMS.

The Publication, Book, and Journal classes are unchanged and only a
minor change is required in the Borrower class. However, there are significant
changes made to the Library class and the main Groovy script that runs the
application. Both rely on the construction of a DAO using the Spring frame-
work. In the first iteration, we detail the changes required.

In the second iteration, we consider the impact of persistence on unit test-
ing. Happily, we find that all of our earlier unit tests can be run without too
much trouble. We also find that is surprisingly easy to introduce new unit tests
aimed at testing our implementation of persistence. Finally, we reflect on the
role of automated unit testing and Groovy.

18.1 iteration 1 : persist the
domain model

For this case study, we use the functional specification of the case study from the
final iteration of Chapter 16. However, we are required to amend the applica-

Barclay chap18.qxd 02/01/1904 9:59 PM Page 239

tion so that the domain model persists in a database. In keeping with the dis-
cussions of Chapter 17, we decide to make use of the Cloudscape relational
DBMS and the Spring framework. Cloudscape is a modern, Java-based DBMS
and Spring is an elegant framework that brings discipline to the implementa-
tion of the DAO. Therefore, we readily take advantage of the fact that Groovy
makes both easily accessible to us.

As the aim of this iteration is to demonstrate that we can persist the appli-
cation in a database, we start by developing a database comprising two tables.
The first, borrowers, represents the library’s borrowers and the second, publi-
cations, represents the publications it holds. Both tables are illustrated in
Figure 18.1. Each table has a primary key shown as membershipNumber and
catalogNumber, respectively. They provide unique entries. In the publications
table, there is also a foreign key, shown as borrowerID, that connects to the bor-
rowers table. It is used when a publication is on loan to a borrower. Finally, the
publications table handles inheritance in the manner described in Section
17.5, that is, one table represents the classes Publication, Book, and Journal.

Note that in the publications table, there are two books (type = BOOK) and
one journal (type = JOURNAL). For consistency, we use only upper-case letters to
denote each type of publication. Further, the Groovy book is on loan to Jessie
(borrowerID = 1234).

Next, we amend the classes previously developed. Happily, the
Publication, Book, and Journal classes require no changes. In the Borrower
class, we declare the Map used to hold borrowed Publications as a property
rather than a private attribute. This avoids the need to provide explicit getter
and setter methods. Similarly, the two Maps used in the Library class to main-
tain its collection of Borrowers and Publications are now declared as properties.

240 C H A P T E R 18 Case Study: A Library Application (Persistence)

borrowers

publications

membershipNumber
1234 Jessie

... ...

name

catalogNumber
111 Groovy

222 UML

title
Ken Barclay

John Savage

author editor
BOOK

BOOK

type
1234

null

borrowerID

333 OOD Jon Kerridge JOURNAL null

...

FIGURE 18.1 Library database tables.

Barclay chap18.qxd 02/01/1904 9:59 PM Page 240

18.1 iteration 1 : persist the domain model 241

Our first major change is to introduce a DAO to the Library. Just like the
Bank class discussed in Section 17.6, it uses a DAO to handle its database access
requirements. By adopting the DAO design pattern, the Library has no knowl-
edge of the underlying database. Notice that the hallmark of a good design is to
separate major concerns. Here, we have separated the business logic, that is, the
model, and the database persistence code.

The functionality we require from the DAO is easily described by the inter-
face LibraryDaoIF:

interface LibraryDaoIF {

def abstract getBorrowers()
def abstract getPublications(borrowers)

def abstract addPublication(publication)
def abstract removePublication(publication)

def abstract registerBorrower(borrower)

def abstract lendPublication(catalogNumber, membershipNumber)
def abstract returnPublication(catalogNumber)

}

It just specifies those methods used previously by the Action class to access and
update the Library’s “database.” Of course, the database was just two simple
Maps. Now, it includes a fully functional relational database.

Because we intend to communicate with the database using the JDBC API,
we name the class that implements this interface LibraryDaoJdbc. Its detailed
coding is as follows:

import org.springframework.jdbc.object.*

import org.springframework.jdbc.core.*

class LibraryDaoJdbc implements LibraryDaoIF {

def getBorrowers() {
def bQuery = new BorrowerQuery(dataSource)
return bQuery.execute()

}

def getPublications(borrowers) {
def pQuery = new PublicationQuery(dataSource, borrowers)
return pQuery.execute()

}

Barclay chap18.qxd 02/01/1904 9:59 PM Page 241

def addPublication(publication) {
def params = null
if(publication instanceof Book)

params = [publication.catalogNumber, publication.title, publication.author, ‘’, ‘BOOK’, null]
else

params = [publication.catalogNumber, publication.title, ‘’, publication.editor, ‘JOURNAL’, null]

def pInsert = new PublicationInsert(dataSource)
pInsert.update(params as Object[])

}

def removePublication(publication) {
def params = [publication.catalogNumber]
def pRemove = new PublicationRemove(dataSource)
pRemove.update(params as Object[])

}

def registerBorrower(borrower) {
def params = [borrower.membershipNumber, borrower.name]

def bInsert = new BorrowerInsert(dataSource)
bInsert.update(params as Object[])

}

def lendPublication(catalogNumber, membershipNumber) {
def params = [membershipNumber, catalogNumber]

def pUpdate = new PublicationUpdate(dataSource)
pUpdate.update(params as Object[])

}

def returnPublication(catalogNumber) {
def params = [null, catalogNumber]

def pUpdate = new PublicationUpdate(dataSource)
pUpdate.update(params as Object[])

}

// -----properties -----------------

def dataSource
}

242 C H A P T E R 18 Case Study: A Library Application (Persistence)

Barclay chap18.qxd 02/01/1904 9:59 PM Page 242

In the implementation of the getBorrowers and getPublications methods,
we have introduced the classes BorrowerQuery and PublicationQuery. They
are subclasses to the MappingSqlQuery class imported from the Spring frame-
work and behave in a manner similar to the AccountQuery class discussed in
Section 17.6.

Both classes are invaluable because they enable us to query the database (in
the constructors) and then create domain model objects (in the redefined
mapRow method) based on the results of the query. Of course, the Spring frame-
work takes care of the details of the communication with the underlying
database. Their coding is as follows:

18.1 iteration 1 : persist the domain model 243

// class: BorrowerQuery
import java.sql.*

import org.springframework.jdbc.object.*

class BorrowerQuery extends MappingSqlQuery {

def BorrowerQuery(ds) {
super(ds, ‘select * from borrowers’)
this.compile()

}

protected Object mapRow(ResultSet rs, int rowNumber) {
def bor = new Borrower(membershipNumber : rs.getString(‘membershipNumber’),

name : rs.getString(‘name’))
return bor

}
}

// class: PublicationQuery
import java.sql.*

import org.springframework.jdbc.object.*

class PublicationQuery extends MappingSqlQuery {

def PublicationQuery(ds, borrowers) {
super(ds, ‘select * from publications’)
this.compile()

this.borrowers = borrowers // used by mapRow to update the model
}

Barclay chap18.qxd 02/01/1904 9:59 PM Page 243

Notice how the method mapRow in PublicationQuery arranges for a
Publication to be attached to its Borrower and for its Borrower to be attached
to it. The call to the Borrower’s attachPublication method mimics the
approach taken in earlier case studies. This brings a strong element of consis-
tency to our work.

In this method, we locate a Borrower as usual by using its membershipNumber
(borrowerID in the database) as an index into the Map, borrowers. Unfortunately,
since we must redefine Spring’s mapRow method, borrowers cannot be a formal
parameter. Therefore, we alias borrowers with a property set by the
PublicationQuery constructor. Our intention is that the Library will supply it
as an actual parameter when it calls its DAO’s getPublications method.

The classes BorrowerInsert, PublicationInsert, PublicationUpdate, and
PublicationRemove all subclass the SqlUpdate class imported from the Spring
framework. They are modeled on the AccountInsert class discussed in Section
17.6. Again, these classes are invaluable, as we can easily update the database
from the domain model without having to concern ourselves with the details of
communicating with the database.

244 C H A P T E R 18 Case Study: A Library Application (Persistence)

protected Object mapRow(ResultSet rs, int rowNumber) {
def pub = null

if(rs.getString(‘type’) == ‘BOOK’)
pub = new Book(catalogNumber : rs.getString(‘catalogNumber’),

title : rs.getString(‘title’), author : rs.getString(‘author’))
else

pub = new Journal(catalogNumber : rs.getString(‘catalogNumber’),
title : rs.getString(‘title’), editor : rs.getString(‘editor’))

def borID = rs.getString(‘borrowerID’)

if(borID != null) {
def bor = borrowers[borID]
if(bor != null)

bor.attachPublication(pub)

}

return pub
}

// -----properties -----------------

def borrowers // an alias for borrowers in the Library
}

Barclay chap18.qxd 02/01/1904 9:59 PM Page 244

// class: BorrowerInsert
import java.sql.*

import org.springframework.jdbc.object.*

import org.springframework.jdbc.core.*

class BorrowerInsert extends SqlUpdate {

def BorrowerInsert(ds) {
super(ds, ‘insert into borrowers(membershipNumber, name) values(?, ?)’)
this.declareParameter(new SqlParameter(Types.VARCHAR))
this.declareParameter(new SqlParameter(Types.VARCHAR))
this.compile()

}
}

// class: PublicationInsert
import java.sql.*

import org.springframework.jdbc.object.*

import org.springframework.jdbc.core.*

class BorrowerInsert extends SqlUpdate {

def BorrowerInsert(ds) {
super(ds, ‘insert into borrowers(membershipNumber, name) values(?, ?)’)
this.declareParameter(new SqlParameter(Types.VARCHAR))
this.declareParameter(new SqlParameter(Types.VARCHAR))
this.compile()

}
}

// class: PublicationUpdate
import java.sql.*

import org.springframework.jdbc.object.*

import org.springframework.jdbc.core.*

class PublicationUpdate extends SqlUpdate {

def PublicationUpdate(ds) {
super(ds, ‘update publications set borrowerID = ? where catalogNumber = ?’)
this.declareParameter(new SqlParameter(Types.VARCHAR))
this.declareParameter(new SqlParameter(Types.VARCHAR))
this.compile()

}
}

18.1 iteration 1 : persist the domain model 245

Barclay chap18.qxd 02/01/1904 9:59 PM Page 245

// class: PublicationRemove
import java.sql.*

import org.springframework.jdbc.object.*

import org.springframework.jdbc.core.*

class PublicationRemove extends SqlUpdate {

def PublicationRemove(ds) {
super(ds, ‘delete from publications where catalogNumber = ?’)
this.declareParameter(new SqlParameter(Types.VARCHAR))
this.compile()

}
}

Notice that in the PublicationUpdate class, the borrowerID field of the publi-
cations table is changed when a Publication is on loan to a Borrower.

Pleasingly, the changes required in the Library class required are minimal
and easily accomplished. The Library continues to be responsible for maintain-
ing its collection of Borrowers and Publications in two Maps, referenced by bor-
rowers and loanStock, respectively. Of course, all of the error checking code
previously developed is unchanged as a consequence of introducing the database.

The first change is that the Library should make appropriate calls to its DAO
when changes are made to its two Maps. This ensures that there is consistency
between the domain model and the database during the execution of the appli-
cation. The second is that the Library’s constructor should initialize its DAO and
use it to initialize its two Maps. This ensures consistency between the database and
the model on application startup. Outline code for the Library is now:

class Library {

def Library(name, dao) {
this.name = name
this.dao = dao

def bors = dao.getBorrowers()
bors.each { bor ->

borrowers[bor.membershipNumber] = bor
}

def pubs = dao.getPublications(borrowers)
pubs.each { pub ->

loanStock[pub.catalogNumber] = pub
}

}

246 C H A P T E R 18 Case Study: A Library Application (Persistence)

Barclay chap18.qxd 02/01/1904 9:59 PM Page 246

def addPublication(publication) {
def message
if(loanStock.containsKey(publication.catalogNumber) == false) {

//
// update database
dao.addPublication(publication)
//
// update model
loanStock[publication.catalogNumber] = publication
message = ‘Publication added’

}
else

message = ‘Cannot add: publication already present’

return message

}

// As for iteration 4 of Chapter 16

// ...

// ------properties ---------------------

def name
def loanStock = [:]
def borrowers = [:]
def dao

}

Notice how the combination of Groovy and the Spring framework have made
the underlying database virtually transparent. For example, code such as:

def bors = dao.getBorrowers()
bors.each { bor ->

borrowers[bor.membershipNumber] = bor
}

def pubs = dao.getPublications(borrowers)
pubs.each { pub ->

loanStock[pub.catalogNumber] = pub
}

in the constructor is beautifully elegant and remarkably effective. Similarly, code
such as:

18.1 iteration 1 : persist the domain model 247

Barclay chap18.qxd 02/01/1904 9:59 PM Page 247

dao.addPublication(publication)

used in the addPublication method to update the underlying database just
could not be simpler.

As the functional specification has not changed, the Action class continues
to have the same responsibilities. For example, the method displayStock pro-
duces a list of all the publications in the library’s stock by delegating to a
Library object. Similarly, the method registerBorrower communicates with
the librarian through a text-based menu. She is prompted to supply the bor-
rower’s membership number and name as before. Happily, this means that no
changes are required to the Action class.

The final task is to develop a Groovy script to run the application. Most of
the code is the controller logic that presents the menu, obtains the user choice,
and then calls the appropriate method in the Action class. It is unchanged from
the previous version.

However, there is one major difference between this version and the one
developed in Chapter 16. It is that we exploit the inversion of control (IoC)
design pattern (see http://www.martinfowler.com/articles/injection.html)
supported by the Spring framework. Its aim is to eliminate the coupling between
classes that can be the source of difficult programming problems.

In earlier case studies, we created and assembled component objects
directly. For example, we created a Library object, created an Action object, and
then attached the Library object to it as an aggregate component. However,
experience has shown that as we develop ever more complex architectures, this
approach becomes untenable. Fortunately, Spring provides us with a lightweight
container responsible for “wiring together” components.

With Spring, the class ClassPathXmlApplicationContext is used to create
and assemble related objects. Its constructor expects a configuration file that
defines the required objects that are required and how they are to be wired
together. Specifically, we have the configuration file config.xml:

248 C H A P T E R 18 Case Study: A Library Application (Persistence)

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE beans PUBLIC “-//SPRING//DTD BEAN//EN”

“http://www.springframework.org/dtd/spring-beans.dtd”>

<beans>
<bean id=”dataSource” class=”org.springframework.jdbc.datasource.DriverManagerDataSource”>

<constructor-arg index=”0”><value>org.apache.derby.jdbc.EmbeddedDriver</value></constructor-arg>
<constructor-arg index=”1”><value>jdbc:derby:libraryDB</value></constructor-arg>
<constructor-arg index=”2”><value></value></constructor-arg>
<constructor-arg index=”3”><value></value></constructor-arg>

</bean>

Barclay chap18.qxd 02/01/1904 9:59 PM Page 248

<bean id=”libDao” class=”LibraryDaoJdbc”>
<property name=”dataSource”>

<ref local=”dataSource”/>
</property>

</bean>

<bean id=”lib” class=”Library”>
<constructor-arg index=”0”><value>Napier</value></constructor-arg>
<constructor-arg index=”1”><ref local=”libDao”/></constructor-arg>

</bean>

<bean id=”act” class=”Action”>
<property name=”library”>

<ref local=”lib”/>
</property>

</bean>
</beans>

As described in Chapter 17, in this XML file, a bean is introduced with the bean
element, identified with an id attribute. Its class is defined with the class attrib-
ute and a property with the property name attribute. There is also an attribute
constructor-arg index to specify a constructor’s parameter.

For example, the bean identified as libDao and class LibraryDaoJdbc has a
property dataSource. It refers to another local bean also identified as
dataSource. This implies that the class LibraryDaoJdbc requires the setter
method setDataSource to initialize that relationship property.

The XML also tells us that constructor arguments specified for the object
identified as dataSource should be used. The object in question is a
DriverManagerDataSource object whose class is imported from the Spring
framework. The constructor parameters allow the Library to communicate with
a local Cloudscape database.

The important point for us to understand is that any necessary code is gen-
erated automatically, and so the description of the LibraryDaoJdbc class given
earlier is simplified. For example, we don’t have to develop the setDataSource
method. It also makes the use of this class much easier since we don’t have to
create and configure LibraryDaoJdbc and DriverManagerDataSource objects
directly.

The creation of Action and Library beans is similar. They are created and
configured automatically. It makes a real difference to know that, given a
suitable configuration file, the Spring framework allows us to make use of a
relational database.

18.1 iteration 1 : persist the domain model 249

Barclay chap18.qxd 02/01/1904 9:59 PM Page 249

To complete the main Groovy script, we create a suitable application con-
text and get an Action object from it. The coding required is refreshingly
straightforward:

def applicationContext = new ClassPathXmlApplicationContext(‘config.xml’)
def action = applicationContext.getBean(‘act’)

Outline code for this iteration is presented as Library 01:

import org.springframework.context.support.*

import console.*

def readMenuSelection() {
println()
println(‘0: Quit\n’)
println(‘1: Add new book’)

// As for iteration 4 of Chapter 16
// ...

print(‘\n\tEnter choice>>> ‘)
return Console.readString()

}

def applicationContext = new ClassPathXmlApplicationContext(‘config.xml’)
def action = applicationContext.getBean(‘act’)

// make first selection
def choice = readMenuSelection()
while(choice != ‘0’) {

if(choice == ‘1’) {
action.addBook() // Add new book

}
// As for iteration 4 of Chapter 16
// ...
} else {

println(“\nUnknown selection”)
}

// next selection
choice = readMenuSelection()

}
println(‘\nSystem closing\n’)

◆

250 C H A P T E R 18 Case Study: A Library Application (Persistence)

LIBRARY 01
Main script

Barclay chap18.qxd 02/01/1904 9:59 PM Page 250

To complete this iteration, we must demonstrate that we have the same func-
tionality as the previous iteration. Functional testing using the text-based menu
to exercise each use-case will suffice in this iteration but we revisit this decision
in the next. Therefore, we repeat the functional tests carried out in iteration 4
of Chapter 16. Happily, we find that the results are exactly the same.

We must also demonstrate that changes to the domain model persist in the
database. Again, this is relatively easy to accomplish. We just note the state of
the domain model by selecting the options:

● Display stock

● Display publications available for loan

● Display publications on loan

● Display all borrowers

then close the application and then rerun it. As before, we find that the results
of the four display options are the same. At this point, we consider that the iter-
ation has met its aims.

18.2 iteration 2 : the impact
of persistence

In the previous case studies, unit testing has been an integral part of our soft-
ware development. In this iteration, we consider the impact of persistence.
Clearly, by introducing a database, we have made a significant change to our
software. Therefore, we try to ensure that all of our previous unit tests execute
without failure and that we can develop new unit tests pertinent to persistence.

Starting with the Book, Journal, and Borrower classes, there is no problem.
Their respective GroovyTestCase classes, that is, BookTest, JournalTest, and
BorrowerTest, all execute without reporting any failures or errors. Therefore, we
add their class files to the runAllTests script. This is reassuring but not unex-
pected since these classes have no involvement with the database.

With the Library class, the situation changes as it interacts with the data-
base through its DAO. In addition, it is created by the Spring framework as part
of an Action object. Before running the previous Library unit tests, we must
ensure that we can clear the database to avoid interference between tests. To
accomplish this, we update the LibraryDaoIF interface with a clearAllMethod:

interface LibraryDaoIF {

// ...
def abstract clearAll()

}

18.2 iteration 2 : the impact of persistence 251

Barclay chap18.qxd 02/01/1904 9:59 PM Page 251

and implement it in LibraryDaoJdbc as:

// class: LibraryDaoJdbc
def clearAll() {

def pClear = new PublicationsClear(dataSource)
pClear.update()
def bClear = new BorrowersClear(dataSource)
bClear.update()

}

The classes PublicationsClear and BorrowersClear are coded as:

import java.sql.*

import org.springframework.jdbc.object.*

import org.springframework.jdbc.core.*

class BorrowersClear extends SqlUpdate {

def BorrowersClear(ds) {
super(ds, ‘delete from borrowers’)
this.compile()

}
}

and
import java.sql.*

import org.springframework.jdbc.object.*

import org.springframework.jdbc.core.*

class PublicationsClear extends SqlUpdate {

def PublicationsClear(ds) {
super(ds, ‘delete from publications’)
this.compile()

}
}

Now, we can update the setUp method of the previous LibraryTest class:

// class: LibraryTest
void setUp() {

// Create the Action object
def applicationContext = new ClassPathXmlApplicationContext (‘config.xml’)
action = applicationContext.getBean(‘act’)

// Clear the model
action.library.loanStock = [:]
action.library.borrowers = [:]

252 C H A P T E R 18 Case Study: A Library Application (Persistence)

Barclay chap18.qxd 02/01/1904 9:59 PM Page 252

// Clear the database
action.library.dao.clearAll()

// As for iteration 4 of Chapter 16
// ...

}

Notice that the property lib has been replaced with the property action. As its
name suggests, it references the Action object created by the Spring framework.
We access the Library created by the Spring framework through it. For exam-
ple, we ensure the each test starts with an empty Library with:

action.library.loanStock = [:]
action.library.borrowers = [:]

and so any initializations made by the Spring framework are undone.

Similarly, we clear the database before starting each test with:

action.library.dao.clearAll()

and make calls to the Library in the test methods with action.library, as in:

void testAddPublication_1() {
def pre = action.library.loanStock.size()
action.library.addPublication(bk1)
def post = action.library.loanStock.size()

assertTrue(‘one less publication than expected’, post == pre + 1)
}

Otherwise, the LibraryTest class is unchanged. Happily, all tests pass and we
add the LibraryTest class file to the runAllTests script. This give us confi-
dence that the Book, Journal, Borrower, and Library classes have been unaf-
fected by the introduction of the database to the Library and the construction
of the Library by the Spring framework. At this point, we are confident that we
have not “broken anything.”

If we turn our attention to unit testing those classes that make use of the
database, then the LibraryDaoJdbc class is the only candidate. An outline of the
LibraryDaoJdbcTest class is:

import groovy.util.GroovyTestCase
import org.springframework.context.support.*

18.2 iteration 2 : the impact of persistence 253

Barclay chap18.qxd 02/01/1904 9:59 PM Page 253

class LibraryDaoJdbcTest extends GroovyTestCase {

/**
* Set up the fixture
*/

void setUp(){

action = this.getActionObject()

action.library.loanStock = [:]
action.library.borrowers = [:]

action.library.dao.clearAll()
bk1 = new Book(catalogNumber : ‘111’, title : ‘Groovy’, author :‘Ken’)
jo1 = new Journal(catalogNumber : ‘333’, title : ‘JOOP’, editor :‘Sally’)
bor1 = new Borrower(membershipNumber : ‘1234’, name : ‘Jessie’)

}

/**
* Test that the addition of a Book is stored in the database
*/

void testAddPublication_1() {
// update the model and the database
action.library.addPublication(bk1)
//
// reset the model
action.library.loanStock = [:]
//
// restore the Action object from the database
action = this.getActionObject()

def expected = 1
def actual = action.library.loanStock.size()
def book = action.library.loanStock[bk1.catalogNumber]

assertTrue(‘unexpected number of publications’, actual == expected)
assertNotNull(‘book not present’, book)

}

/**
* Test that the addition of a Journal is stored in the database
*/

void testAddPublication_2(){
// ...

}

254 C H A P T E R 18 Case Study: A Library Application (Persistence)

Barclay chap18.qxd 02/01/1904 9:59 PM Page 254

/**
* Test that the removal of a Publication is stored in the database
*/

void testRemovePublication(){
// ...

}

/**
* Test that a new Borrower is stored in the database

*/
void testRegisterBorrower(){

// update the model and the database
action.library.registerBorrower(bor1)
//
// reset the model
action.library.borrowers = [:]
//
// restore the Action object from the database
action = this.getActionObject()

def expected = 1
def actual = action.library.borrowers.size()
def borrower = action.library.borrowers[bor1.membershipNumber]

assertTrue(‘unexpected number of borrowers’, actual == expected)
assertNotNull(‘borrower not present’, borrower)

}

/**
* Test that the lending of a Publication to a Borrower is stored in the database
*/

void testLendPublication(){
// ...

}

/**
* Test that the return of a Publication is stored in the database
*/

void testReturnPublication(){
// ...

}

/**
* Test that the database tables, borrowers and publications are empty
*/

18.2 iteration 2 : the impact of persistence 255

Barclay chap18.qxd 02/01/1904 9:59 PM Page 255

void testClearAll(){
// update the model and the database
action.library.addPublication(bk1)
action.library.addPublication(jo1)
action.library.registerBorrower(bor1)
//
// reset the model and the database
action.library.loanStock = [:]
action.library.borrowers = [:]
action.library.dao.clearAll()
//
// restore the Action object from the database
action = this.getActionObject()

def actual = (action.library.loanStock.size() == 0) &&
(action.library.borrowers.size() == 0)

assertTrue(‘unexpected Publications or Borrowers’, actual == true)
}

/**
* Get an Action object composed of a Library with its Borrowers and Publications
* updated from the database
*/

private getActionObject() {
def applicationContext = new ClassPathXmlApplicationContext(‘config.xml’)
return applicationContext.getBean(‘act’)

}

// -----properties ------------------

def action
def bk1
def jo1
def bor1

}

256 C H A P T E R 18 Case Study: A Library Application (Persistence)

When we add the corresponding class file to the runAllTests script and exe-
cute it, then all (38) tests pass. Although we might add more tests later, at this
point, we are reasonably confident that the database is behaving as expected.
Full listings are given on the book website.

Note that as well as inheriting a setUp method from the GroovyTestCase
class, a subclass also inherits a tearDown method. It executes on completion of
each test method and is normally redefined to reclaim or close major resources
used in a test. Otherwise, it has no effect. Closing the connection to a database
is an obvious use for it but is unnecessary here. Also, an excellent JUnit-based

Barclay chap18.qxd 02/01/1904 9:59 PM Page 256

framework, DbUnit (see http://dbunit.sourceforge.net) is available for testing
database applications. However, we can assume that the Cloudscape database
has been rigorously tested!

Before leaving this iteration, we take the opportunity to reflect on the rela-
tionship between unit testing and Groovy. Clearly, for any developer, unit test-
ing is an important activity. However, we believe that for the Groovy
programmer, it is not just important, it is essential. This is because Groovy is a
dynamic language and that means that the compiler can’t make all the type
checks that are possible in a statically typed language. There is no guarantee that
a Groovy script that compiles cleanly will execute cleanly. For example, execu-
tion may be prematurely terminated because some object cannot execute a
particular method or does not have a particular property.

An obvious solution is to execute Groovy code as often and as thoroughly
as possible. Hopefully, problems can be fixed as they arise. Of course, to do this
manually is impractical, but it is made possible with automated unit tests. For
example, when we execute the runAllTests script we have a guarantee that the
code in these (38) tests not only compiles but executes cleanly.

One final point to make is that a unit test often does more than a com-
piler check could. It checks that something makes sense. There is even a view
that the combination of a dynamic language such as Groovy and unit testing
is more useful than just a traditionally compiled programming language (see
http://www.mindview.net/WebLog/log-0025) on its own. For example, a com-
piler might report that an int is returned from a method where a String is
expected. Groovy will not do this. However, a compiler cannot check that the
String returned makes sense.

We can easily accomplish this with a unit test. For example, in the
LibraryTest class, we have:

// class: LibraryTest
void testRemovePublication_2() {

action.library.addPublication(bk1)
def actual = action.library.removePublication(bk1.catalogNumber)
def expected = ‘Publication removed’

assertTrue(‘unexpected message’, actual == expected)
}

The test checks that the String correctly informs that a Publication has been
removed, not just that a String is made available. Therefore, we strongly advo-
cate the use of unit testing, but stress that with Groovy, it is no hardship. On
the contrary, it is fun!

18.2 iteration 2 : the impact of persistence 257

Barclay chap18.qxd 02/01/1904 9:59 PM Page 257

18.3 exercises

1. From time to time, borrowers leave the library. Therefore, our software
must support a deregistration facility. Introduce a method:

removeBorrower(membershipNumber)

to the Library class that removes a Borrower from the Library. Update the
final iteration of the case study so that users have this option available.

2. Devise and implement tests for the removeBorrower method. For example,
you should test that a Borrower removed has no outstanding loans and
that no Publication is attached to it. Also, you should check that the
database is updated accordingly. Finally, consider erroneous user input,
for example, removing a Borrower who is not registered.

3. Discuss how the design decisions made in this and earlier chapters have
affected the ease or difficulty of the changes made.

4. Discuss how Groovy has affected the ease or difficulty of the changes made.

5. In the case study, there is one database table publications for the classes
Book and Journal. Discuss the assertion that this decision is pragmatic but
not object oriented. Suggest an alternative and give an outline
implementation.

6. The database in the case study is held locally. How does the use of a
DAO design pattern affect accessing a database on a remote server? Give
an outline implementation.

258 C H A P T E R 18 Case Study: A Library Application (Persistence)

Barclay chap18.qxd 02/01/1904 9:59 PM Page 258

259

C H A P T E R 19
xml builders and parsers

XML has quickly established itself as a technology that can be used for a vari-
ety of applications. As simple XML markup, it can represent both data and its
structure. This is illustrated in the output produced from Example 01. XML is
so adaptable that it also finds uses for object configuration (see Chapters 18 and
22), GUI architecting (see Chapter 20), and application building and deploying
(see Appendix K).

Groovy supports a tree-based markup generator, BuilderSupport, that can be
subclassed to make a variety of tree-structured object representations.
Commonly, these builders are used to represent XML markup, HTML markup,
or, as we shall see in the next chapter, Swing user interfaces. Groovy’s markup
generator catches calls to pseudomethods and converts them into elements or
nodes of a tree structure. Parameters to these pseudomethods are treated as
attributes of the nodes. Closures as part of the method call are considered as
nested subcontent for the resulting tree node.

These pseudomethods are an illustration of the meta-object protocol
(MOP) described in Section I.5 of Appendix I. The BuilderSupport class, from
which concrete builder classes are derived, includes an implementation of the
MOP method invokeMethod, which translates the pseudomethods into the
nodes of the resulting tree.

19.1 groovy markup

Whichever kind of builder object is used, the Groovy markup syntax is always
the same. For example, consider the following fragment:

Barclay chap19.qxd 02/01/1904 10:00 PM Page 259

staffBuilder = ... // create a builder object
staffBuilder.staff(department : ‘Computing’, campus : ‘Merchiston’) {

academic(name : ‘Ken Barclay’, office : ‘C48’, telephone : ‘2745’) {
module(number : ‘CO12002’, name : ‘Software Development 1’)
module(number : ‘CO12005’, name : ‘Software Development 2’)

}
academic(name : ‘John Savage, office : ‘C48’, telephone : ‘2746’) {

module(number : ‘CO22002’, name : ‘Software Development 3’)
module(number : ‘CO32005’, name : ‘Design Patterns)

}
}

Here, the tree structure is presented by nested elements. Both academic ele-
ments have two distinct module elements. The staff element comprises two
academic elements. Figure 19.1 is a tree representation of this data.

The interpretation is that the staffBuilder object calls the pseudomethod
staff invoked with two parameters. The first parameter is the Map of objects
[department : ‘Computing’, campus : ‘Merchiston’]. The second parameter
is a Closure object representing the nested subelements. When invoked, this
closure will make two calls on the pseudomethod academic. These
pseudomethod calls then repeat the same pattern. For example, the first acad-
emic method call has the Map parameter [name : ‘Ken Barclay’, office :
‘C48’, telephone : ‘2745’].

It is important to recognize that all this is native Groovy syntax being used
to represent any arbitrarily nested markup. Since this is native markup, then we
can also mix in any other Groovy constructs such as variables, control flow such
as branching, or method calls. In this chapter, we discuss a builder for XML
structures. In later chapters, we will see builders for other kinds of tree-shaped
structures, including GUI objects.

260 C H A P T E R 19 XML Builders and Parsers

staff

module module module module

academic academic

FIGURE 19.1 Tree representation of builder.

Barclay chap19.qxd 02/01/1904 10:00 PM Page 260

19.2 markupbuilder 261

19.2 markupbuilder

Our first illustration is a MarkupBuilder for an XML document to represent a
book with its title, author, publisher, and ISBN. The pseudomethod
author(‘Ken Barclay’) will produce the XML element in which the parameter
becomes the content:

<author>Ken Barclay</author>

If the parameter appears as a named parameter, then this is translated into an
attribute of an XML element. For example, isbn(number : ‘1234567890’) pro-
duces:

<isbn number=’1234567890’/>

import groovy.xml.MarkupBuilder

// Create a builder
def mB = new MarkupBuilder()

// Compose the builder
mB.book() {

author(‘Ken Barclay’) // producing <author>Ken Barclay</author>
title(‘Groovy’)
publisher(‘Elsevier’)
isbn(number : ‘1234567890’) // producing <isbn number=’1234567890’/>

}

◆

Executing this script produces the output sent directly to the standard output
stream:

<book>
<author>Ken Barclay</author>
<title>Groovy</title>
<publisher>Elsevier</publisher>
<isbn number=’1234567890’/>

</book>

Here, the MarkupBuilder class is used to construct the application. The builder
object mB is called with the pseudomethod book to establish a <book> element.
The absence of parameters for this method call specifies an element with

EXAMPLE 01
A first example

Barclay chap19.qxd 02/01/1904 10:00 PM Page 261

content. The closure contains pseudomethod calls that produce the book con-
tent such as the <author> element.

The builder object mB is called with the pseudomethod book. Further, the
nested elements author, title, and so on are also considered pseudomethods
applied to the builder object mB.

The default constructor for the class MarkupBuilder is initialized so that the
generated XML is issued to the standard output stream. We can use a parame-
terized constructor call to specify a file to which to send the XML. This is shown
in Example 02. Here, the parameter to the MarkupBuilder constructor is a
PrintWriter (see JDK) and is obtained from the File object. The output to file
book.xml is the same as the XML previously cited.

import groovy.xml.MarkupBuilder
import java.io.*

// Create a builder
def mB = new MarkupBuilder(new File(‘book.xml’).newPrintWriter())

// Compose the builder
mB.book() {

author(‘Ken Barclay’) // producing <author>Ken Barclay</author>
title(‘Groovy’)
publisher(‘Elsevier’)
isbn(number : ‘1234567890’) // producing <isbn number=’1234567890’/>

}

◆

We can now be more ambitious and construct a much larger XML document.
A Map provides the data used to populate the XML. Each key entry in the Map
represents a book ISBN. The value is a List object containing the remaining
book details. The listing is shown in Example 03.

262 C H A P T E R 19 XML Builders and Parsers

EXAMPLE 02
File output

EXAMPLE 03
A Library of
Books

import groovy.xml.MarkupBuilder
import java.io.*

def data = [‘1111111111’ : [‘Groovy’, ‘Ken Barclay’, ‘Elsevier’],
‘2222222222’ : [‘Object Oriented Design’, ‘John Savage’, ‘Elsevier’],
‘3333333333’ : [‘C Programming’, ‘Ken Barclay’, ‘Prentice Hall’]
]

Barclay chap19.qxd 02/01/1904 10:00 PM Page 262

// Create a builder
def mB = new MarkupBuilder(new File(‘library.xml’).newPrintWriter())

// Compose the builder
def lib = mB.library() {

data.each { bk ->
mB.book() {

title(bk.value[0])
author(bk.value[1])
publisher(bk.value[2])
isbn(number : bk.key)

}
}

}

Note how, in this example, we have to repeat the mB prefix on mB.book() to dis-
tinguish this as further markup and not normal Groovy script as part of the clo-
sure. Without this qualifier, book() { ... } would result in an error from the
Groovy compiler. The output from the program is written to the file and con-
tains:

<library>
<book>

<title>Object Oriented Design</title>
<author>John Savage</author>
<publisher>Elsevier</publisher>
<isbn number=’2222222222’/>

</book>
<book>

<title>C Programming</title>
<author>Ken Barclay</author>
<publisher>Prentice Hall</publisher>
<isbn number=’3333333333’ />

</book>
<book>

<title>Groovy</title>
<author>Ken Barclay</author>
<publisher>Elsevier</publisher>
<isbn number=’1111111111’ />

</book>
</library>

◆

19.2 markupbuilder 263

Barclay chap19.qxd 02/01/1904 10:00 PM Page 263

Note that the books are not in the same order as the data in the Map. Of course,
this is a consequence of a Map as an unordered collection of key/value pairs.
Should we require them in the same order, then see Exercise 5.

19.3 xml parsing

The Groovy XmlParser class employs a simple model for parsing an XML doc-
ument into a tree of Node (see GDK documentation) instances. This parser
ignores any comments and processing instructions in the XML document and
converts the XML into a Node for each element in the XML. Each Node has the
name of the XML element, the attributes of the element, and references to any
child Nodes. This model is sufficient for most simple XML processing.

The resulting tree of Node objects can be traversed using the object naviga-
tion scheme introduced in Appendix I. If doc represents the root of the
<library> example given previously, then doc.book selects all the <book> ele-
ments in the <library>. The List of <book> elements is delivered as a List of
Node objects representing the <book> elements. Equally, doc.book[0] selects the
first <book> in the <library>. In our <library>, a <book> element has a single
<title> element. However, since there may be many <title> elements enclosed
by a <book> element, in the same way that many <book> elements are enclosed
by the <library> element, then doc.book[0].title[0] obtains the first <title>
for the first <book>.

Example 04 illustrates the XmlParser class and the navigation of an XML
document. Note how the text method defined in the Node class is used to
obtain the String value for the <title> element.

import groovy.util.*

def parser = new XmlParser()
def doc = parser.parse(‘library.xml’)

println “${doc.book[0].title[0].text()}”

The program output is as expected:

Object Oriented Design

◆

Since doc.book delivers a List of Nodes, then we can use an iterator method and
a closure to process all the <book> elements in the <library>. In Example 05, we
use the each iterator to print the title of every book.

264 C H A P T E R 19 XML Builders and Parsers

EXAMPLE 04
XML parsing and
navigation

Barclay chap19.qxd 02/01/1904 10:00 PM Page 264

import groovy.util.*

def parser = new XmlParser()
def doc = parser.parse(‘library.xml’)

doc.book.each { bk ->
println “${bk.title[0].text()}”

}

Again, the expected outcome is:

Object Oriented Design
C Programming
Groovy

◆

The preceding example could take advantage of doc.book.title navigating to
all book titles. Example 06 simplifies the previous code.

import groovy.util.*

def parser = new XmlParser()
def doc = parser.parse(‘library.xml’)

doc.book.title.each { title ->
println “${title.text()}”

}

The notation [‘@number’] can be applied to an <isbn> element to obtain
its number attribute. Consider then, the following XML file that lists some aca-
demic staff and the grades they assigned to the students they tutor. The staff are
recorded by their name, and the students by their names and grades. The file
contains:

<staff>
<lecturer name=’Ken Barclay’>

<student name=’David’ grade=’55’/>
<student name=’Angus’ grade=’75’/>

</lecturer>
<lecturer name=’John Savage’>

<student name=’Jack’ grade=’60’/>
<student name=’Todd’ grade=’44’/>
<student name=’Mary’ grade=’62’/>

</lecturer>

19.3 xml parsing 265

EXAMPLE 05
Iterating through
XML content

EXAMPLE 06
Simplification
through navigation

Barclay chap19.qxd 02/01/1904 10:00 PM Page 265

<lecturer name=’Jessie Kennedy’>
<student name=’Mike’ grade=’50’/>
<student name=’Ruth’ grade=’70’/>

</lecturer>
</staff>

◆

Example 07 demonstrates selecting entries from this file based on various criteria.

import groovy.util.*

def parser = new XmlParser()
def doc = parser.parse(‘staff.xml’)

println doc.lecturer.student[‘@name’]

println doc.lecturer.student.findAll { stu ->
stu[‘@grade’].toInteger() >= 65

} [‘@name’]

doc.lecturer.student.each { stu ->
if(stu[‘@grade’].toInteger() >= 65)

println stu[‘@name’]
}

◆

The first print statement obtains a List of all the student names:

[David, Angus, Jack, Todd, Mary, Mike, Ruth]

The second print statement is used to obtain a List of those students with a
grade not less than 65. For each such student, we then print their name.

[Angus, Ruth]

The each iterator at the end of the listing achieves the same as the last example.
This time, no List object is generated, but those same student names are
printed, one per line:

Angus
Ruth

266 C H A P T E R 19 XML Builders and Parsers

EXAMPLE 07
Attributes

Barclay chap19.qxd 02/01/1904 10:00 PM Page 266

Consider the development of a large database application. This might involve
producing many interlinked tables to capture the entities and relations in the
problem domain. Producing the SQL instructions to create these tables might
prove an expensive and time-consuming activity. In the next example, we show
how an XML document can be used to describe the tables and their relations
and how from the XML, it is a relatively simple task to convert it into SQL
instructions.

The XML document (in the file tables.xml) contains:

<?xml version=”1.0” encoding=”UTF-8”?>

<tables>
<table name=”Book”>

<field name=”title” type=”text”/>
<field name=”isbn” type=”text”/>
<field name=”price” type=”integer”/>
<field name=”author” type=”id”/>
<field name=”publisher” type=”id”/>

</table>
<table name=”Author”>

<field name=”surname” type=”text”/>
<field name=”forename” type=”text”/>

</table>
<table name=”Publisher”>

<field name=”name” type=”text”/>
<field name=”url” type=”text”/>

</table>
</tables>

Each <table> element describes a table in a relational database. The <field>
subelements represent the fields of the table with its name and type. The basic
types supported in this small example are text, integer, and id. An id type
denotes a relationship with another table and is a foreign key for another table.
The program to process this information is given in Example 08.

import groovy.util.*

def typeToSQL = [‘text’ : ‘TEXT NOT NULL’,
‘id’ : ‘INTEGER NOT NULL’,
‘integer’ : ‘INTEGER NOT NULL’
]

def parser = new XmlParser()
def doc = parser.parse(‘tables.xml’)

19.3 xml parsing 267

EXAMPLE 08
XML to SQL

Barclay chap19.qxd 02/01/1904 10:00 PM Page 267

doc.table.each { tab ->
println “DROP TABLE IF EXISTS ${tab[‘@name’]};”
println “CREATE TABLE ${tab[‘@name’]}(“
println “ ${tab[‘@name’]}_ID ${typeToSQL[‘id’]},”
tab.field.each { col ->

println “ ${col[‘@name’]} ${typeToSQL[col[‘@type’]]},”
}
println “ PRIMARY KEY (${tab[‘@name’]}_ID)”
println “);”

}

◆

When we run this application against the data in tables.xml, we produce the
SQL to establish the tables in the database:

DROP TABLE IF EXISTS Book;
CREATE TABLE Book(

Book_ID INTEGER NOT NULL,
title TEXT NOT NULL,
isbn TEXT NOT NULL,
price INTEGER NOT NULL,
author INTEGER NOT NULL,
publisher INTEGER NOT NULL,
PRIMARY KEY (Book_ID)

);
DROP TABLE IF EXISTS Author;
CREATE TABLE Author(

Author_ID INTEGER NOT NULL,
surname TEXT NOT NULL,
forename TEXT NOT NULL,
PRIMARY KEY (Author_ID)

);
DROP TABLE IF EXISTS Publisher;
CREATE TABLE Publisher(

Publisher_ID INTEGER NOT NULL,
name TEXT NOT NULL,
url TEXT NOT NULL,
PRIMARY KEY (Publisher_ID)

);

Combining our XML parsing and navigation of an XML structure with a
MarkupBuilder provides a mechanism whereby we can apply a transformation to
some input XML and deliver some new output, either XML or some other
form. This kind of transformation is often the preserve of XSLT (Fitzgerald,

268 C H A P T E R 19 XML Builders and Parsers

Barclay chap19.qxd 02/01/1904 10:00 PM Page 268

2003; Tidwell, 2001). However, many transformations are arguably easier to
capture as Groovy. This is shown by Example 09, in which we take the weather
file (all temperatures are Fahrenheit and all dates are MM/DD/YYYY):

<weather>
<temperatures city=”Paris”>

<temperature date=”01/21/2001”>67</temperature>
<temperature date=”01/22/2001”>70</temperature>
<temperature date=”01/23/2001”>72</temperature>
<temperature date=”01/24/2001”>62</temperature>
<temperature date=”01/25/2001”>65</temperature>
<temperature date=”01/26/2001”>65</temperature>
<temperature date=”01/27/2001”>66</temperature>
<temperature date=”01/28/2001”>78</temperature>

</temperatures>
<temperatures city=”London”>

<temperature date=”01/21/2001”>42</temperature>
<temperature date=”01/22/2001”>41</temperature>
<temperature date=”01/23/2001”>45</temperature>
<temperature date=”01/24/2001”>50</temperature>
<temperature date=”01/25/2001”>31</temperature>
<temperature date=”01/26/2001”>40</temperature>
<temperature date=”01/27/2001”>42</temperature>
<temperature date=”01/28/2001”>47</temperature>

</temperatures>
<temperatures city=”Edinburgh”>

<temperature date=”01/21/2001”>22</temperature>
<temperature date=”01/22/2001”>24</temperature>
<temperature date=”01/23/2001”>23</temperature>
<temperature date=”01/24/2001”>30</temperature>
<temperature date=”01/25/2001”>12</temperature>
<temperature date=”01/26/2001”>10</temperature>
<temperature date=”01/27/2001”>28</temperature>
<temperature date=”01/28/2001”>22</temperature>

</temperatures>
</weather>

and produce a table of the temperatures for each city and determine the lowest
recorded value for each city. This latter task, although simple to describe, is not
the simplest to express in XSLT. However, with Groovy object navigation, it is
a relatively simple exercise.

import groovy.util.*

def parser = new XmlParser()
def doc = parser.parse(‘weather.xml’)

19.3 xml parsing 269

EXAMPLE 09
Transforming XML

Barclay chap19.qxd 02/01/1904 10:00 PM Page 269

doc.temperatures.each { temps ->
def lowest = 200
println “City: ${temps[‘@city’]}”

println ‘+------+--+’
temps.temperature.each { temp ->

def tmp = temp.text().toInteger()
printf(‘⎪ %10s ⎪ %2d ⎪\n’, [temp[‘@date’], tmp])
if(tmp < lowest)

lowest = tmp
}
println ‘+------+--+’

println “Lowest recorded temperature is: ${lowest}”
println()

}

When we run this script, the output is:

City: Paris
+------+--+
⎪ 01/21/2001 ⎪ 67 ⎪
⎪ 01/22/2001 ⎪ 70 ⎪
⎪ 01/23/2001 ⎪ 72 ⎪
⎪ 01/24/2001 ⎪ 62 ⎪
⎪ 01/25/2001 ⎪ 65 ⎪
⎪ 01/26/2001 ⎪ 65 ⎪
⎪ 01/27/2001 ⎪ 66 ⎪
⎪ 01/28/2001 ⎪ 78 ⎪
+------+--+
Lowest recorded temperature is: 62

City: London
+------+--+
⎪ 01/21/2001 ⎪ 42 ⎪
⎪ 01/22/2001 ⎪ 41 ⎪
⎪ 01/23/2001 ⎪ 45 ⎪
⎪ 01/24/2001 ⎪ 50 ⎪
⎪ 01/25/2001 ⎪ 31 ⎪
⎪ 01/26/2001 ⎪ 40 ⎪
⎪ 01/27/2001 ⎪ 42 ⎪
⎪ 01/28/2001 ⎪ 47 ⎪
+------+--+
Lowest recorded temperature is: 31

270 C H A P T E R 19 XML Builders and Parsers

Barclay chap19.qxd 02/01/1904 10:00 PM Page 270

City: Edinburgh
+------+--+
⎪ 01/21/2001 ⎪ 22 ⎪
⎪ 01/22/2001 ⎪ 24 ⎪
⎪ 01/23/2001 ⎪ 23 ⎪
⎪ 01/24/2001 ⎪ 30 ⎪
⎪ 01/25/2001 ⎪ 12 ⎪
⎪ 01/26/2001 ⎪ 10 ⎪
⎪ 01/27/2001 ⎪ 28 ⎪
⎪ 01/28/2001 ⎪ 22 ⎪
+------+--+
Lowest recorded temperature is: 10

◆

Some XSLT transformations are extremely difficult to express (see http://www.
oracle.com/technology/pub/articles/wang_xslt.html, http://www.javaworld.
com/javaworld/jw-12-2001/jw-1221-xslt.html). For some, we would have to
resort to nonportable XSLT extensions. Groovy’s support for an XPath-like
notation (see http://www.w3.org/TR/xpath20/) to traverse complex structures
generally yields a simpler implementation than using XSLT.

For example, consider an XML document for a CD catalog:

<catalog>
<cd>

<title>Empire Burlesque</title>
<artist>Bob Dylan</artist>
<country>USA</country>
<company>Columbia</company>
<price>10.90</price>
<year>1985</year>

</cd>
<cd>

<title>Hide your heart</title>
<artist>Bonnie Tyler</artist>
<country>UK</country>
<company>CBS Records</company>
<price>9.90</price>
<year>1988</year>

</cd>
<cd>

19.3 xml parsing 271

Barclay chap19.qxd 02/01/1904 10:00 PM Page 271

<title>Still got the blues</title>
<artist>Gary More</artist>
<country>UK</country>
<company>Virgin Records</company>
<price>10.20</price>
<year>1990</year>

</cd>
<cd>

<title>This is US</title>
<artist>Gary Lee</artist>
<country>UK</country>
<company>Virgin Records</company>
<price>12.20</price>
<year>1990</year>

</cd>
</catalog>

We plan to publish this data, grouping the CDs by their country of origin, then
further grouped by year of publication. The final form we seek is:

<grouping>
<country name=’UK’>

<year year=’1988’>
<title>Hide your heart</title>

</year>
<year year=’1990’>

<title>Still got the blues</title>
<title>This is US</title>

</year>
</country>
<country name=’USA’>

<year year=’1985’>
<title>Empire Burlesque</title>

</year>
</country>

</grouping>

We exploit the ease whereby we can traverse an XML structure. Further, we
use Groovy’s native language support for Lists and Maps to make the necessary
transformations. We convert the XML into a Map in which the key is the coun-
try of origin:

[‘UK’ : ...,
‘USA’ : ...
]

272 C H A P T E R 19 XML Builders and Parsers

Barclay chap19.qxd 02/01/1904 10:00 PM Page 272

The value for each key is another Map in which the key is the year of publica-
tion:

[‘UK’ : [1988 : ..., 1990 : ...],
‘USA’ : [1985 : ...]
]

Finally, the values for these inner Maps are Lists of titles:

‘USA’ : [1985 : [‘Empire Burlesque’]]
]

From this structure, we can readily make the transformation into the required
XML. Example 10 is the script for this task. The conversion from the XML into
the Map of Maps is performed by the countryGrouping method.

import groovy.util.*

import groovy.xml.*

def countryGrouping(catalog) {
countryMap = [:]

catalog.cd.each { cd ->
if(countryMap.containsKey(cd.country[0].text())) {

def yearMap = countryMap[cd.country[0].text()]
if(yearMap.containsKey(cd.year[0].text()))

yearMap[cd.year[0].text()] << cd.title[0].text()
else

yearMap[cd.year[0].text()] = [cd.title[0].text()]
} else {

}
}

return countryMap
}

def parser = new XmlParser()
def doc = parser.parse(‘catalog.xml’)

// Create a builder
def mB = new MarkupBuilder(new File(‘catalog.countries.xml’).newPrintWriter())
def groupings = countryGrouping(doc)

countryMap[cd.country[0].text()] = [(cd.year[0].text()) : [cd.title[0].text()]]

[‘UK’ : [1988 : [‘Hide your heart’], 1990 : [‘Still got the blues’, ‘This is US’]],

19.3 xml parsing 273

EXAMPLE 10
Grouping

Barclay chap19.qxd 02/01/1904 10:00 PM Page 273

mB.grouping() {
groupings.each { country, yearMap ->

mB.country(name : country) {
yearMap.each { year, titleList ->

mB.year(year : year) {
titleList.each { title ->

mB.title(title)
}

}
}

}
}

}

As a final example of making transformations to an XML data file, consider one
that represents a report of customers’ orders. The original file content might be:

<orderinfo>
<customer group=”exclusive”>

<id>234</id>
<serviceorders>

<order>
<productid>1231</productid>
<price>100</price>
<timestamp>2004-06-05:14:40:05</timestamp>

</order>
<order>

<productid>2001</productid>
<price>20</price>
<timestamp>2004-06-12:15:00:44</timestamp>

</order>
</serviceorders>

</customer>
<customer group=”regular”>

<id>111</id>
<serviceorders>

<order>
<productid>1001</productid>
<price>10</price>
<timestamp>2004-06-07:10:00:56</timestamp>

</order>
<order>

<productid>1231</productid>
<price>10</price>
<timestamp>2004-06-01:09:42:15</timestamp>

</order>

274 C H A P T E R 19 XML Builders and Parsers

Barclay chap19.qxd 02/01/1904 10:00 PM Page 274

<order>
<productid>2001</productid>
<price>20</price>
<timestamp>2004-06-16:22:11:19</timestamp>

</order>
</serviceorders>

</customer>
<customer group=”regular”>

<id>112</id>
<serviceorders/>

</customer>
</orderinfo>

◆

Observe how each customer is identified by the <id> element such as
<id>234</id> and each order identifies the product by examples such as
<productid>1231</productid>. A requirement might be to transform the XML
into one in which the <timestamp> element is removed and the customer and
product identifiers are replaced by their names taken from a database. Again,
this is not the kind of transformation undertaken by XSLT. Example 11 is the
simple Groovy script to make this change.

import groovy.sql.*

import groovy.util.*

import groovy.xml.*

def DB = ‘jdbc:derby:orderinfoDB’
def USER = ‘’
def PASSWORD = ‘’
def DRIVER = ‘org.apache.derby.jdbc.EmbeddedDriver’

// Connect to database
def sql = Sql.newInstance(DB, USER, PASSWORD, DRIVER)

def parser = new XmlParser()
def doc = parser.parse(‘orderinfo.xml’)

// Create a builder
def mB = new MarkupBuilder(new File(‘orderinfo.details.xml’).newPrintWriter())

mB.orderinfo() {
doc.customer.each { cust ->

mB.customer(group : cust[‘@group’]) {

19.3 xml parsing 275

EXAMPLE 11
Replacing ids

Barclay chap19.qxd 02/01/1904 10:00 PM Page 275

def customer = sql.firstRow(‘select * from customers‘+
‘where id = ?’, [cust.id[0].text()])

mB.id(customer.name)
mB.serviceorders() {

cust.serviceorders.order.each { order ->
mB.order() {

def product = sql.firstRow(‘select * from products
where id = ?’, [order.productid[0].text()])

mB.productid(product.name)
mB.price(order.price[0].text())

}
}

}
}

}
}

◆

276 C H A P T E R 19 XML Builders and Parsers

19.4 exercises

1. Use a MarkupBuilder to construct the weather file illustrated in Example
09.

2. Using the library.xml file from Examples 04, 05, and 06, produce a list
of the titles and the ISBNs of books published by Elsevier.

3. Modify Example 09 and transform the XML into HTML that can be
rendered by a browser.

4. Extend Example 10 to handle configuration files as shown at the end of
Chapter 18.

5. Modify Example 03 so that the output is in ISBN order.

Barclay chap19.qxd 02/01/1904 10:00 PM Page 276

277

C H A P T E R 20
gui builders

The preceding chapter described how Groovy markup can be used to assemble
XML structures. A graphical application is an assembly of Swing components,
nested one within another in a hierarchical manner. For example, we might have
panels nested within other panels to construct a user interface. Equally, we
might have text fields and buttons in a user dialog. Hence, the native syntax of
Groovy markup can also be used for Swing applications.

20.1 swingbuilder

A graphical application can be developed using the Swing framework (Eckstein
et al., 2002; Topley, 1998). This is a large and complex library consisting of over
300 classes and interfaces. The software engineers that developed it made full
use of leading edge technologies, such as design patterns (Gamma et al., 1995;
Grand, 2002), and this further complicates its usage.

With the SwingBuilder class, the pseudomethods represent Swing compo-
nents. In most cases, these pseudomethods are named after the Swing class with
the prefix “J” removed and the first letter given as lowercase. Hence,
pseudomethod frame is used to construct a JFrame widget and textField for a
JTextField widget. The pseudomethod parameters are used to initialize the
component. The closure defines the subcomponent widgets.

The first illustration is a graphical application that displays the text “Hello
world.” Objects of the class JLabel represent fixed text elements in Swing.
Objects of the class JFrame are used to represent an application’s top-level win-
dow. In this first application, we populate a JFrame object with an enclosed
JLabel object. This immediately suggests Groovy markup with a frame and a
contained label. Example 01 presents the code.

Barclay chap20.qxd 02/01/1904 10:01 PM Page 277

import groovy.swing.SwingBuilder
import javax.swing.*

// Create a builder
def sB = new SwingBuilder()

// Compose the builder
def frame = sB.frame(title : ‘Example01’, location : [100, 100],

size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE) {
label(text : ‘Hello world’)

}

// Now show it
frame.pack()
frame.setVisible(true)

◆

278 C H A P T E R 20 GUI Builders

EXAMPLE 01
A first frame

FIGURE 20.1 The first frame.

Here, the SwingBuilder class is used to construct the application. The builder
object sB is called with the pseudomethod frame to establish a JFrame object.
The named parameters of the method call specify the title in the caption bar,
the position of the upper left of the window, the size of the window, and that
the application exits the Java runtime when the close button on the frame is
selected. The closure contains a single pseudomethod call label that creates the
JLabel object decorated with the required text. Figure 20.1 shows the
application running.

We quickly become more ambitious, populating the frame with a panel that
maintains six components. Pairs of labels and text fields are used to invite the
user to supply their full name. The panel employs a GridLayout manager to
arrange the subcomponents that are organized in a 3-by-2 grid (with a 5-pixel
gap between each). The code for this is given in Example 02.

Barclay chap20.qxd 02/01/1904 10:01 PM Page 278

20.1 swingbuilder 279

import groovy.swing.SwingBuilder
import javax.swing.*

import java.awt.*

// Create a builder
def sB = new SwingBuilder()

// Compose the builder
def frame = sB.frame(title : ‘Example02’, location : [100, 100],

size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE) {
panel(layout : new GridLayout(3, 2, 5, 5)) {

label(text : ‘Last Name:’, horizontalAlignment : JLabel.RIGHT)
textField(text : ‘’, columns : 10)
label(text : ‘Middle Name:’, horizontalAlignment : JLabel.RIGHT)
textField(text : ‘’, columns : 10)
label(text : ‘First Name:’, horizontalAlignment : JLabel.RIGHT)
textField(text : ‘’, columns : 10)

}
}

// Now show it
frame.pack()
frame.setVisible(true)

◆

EXAMPLE 02
Using a layout
manager

FIGURE 20.2 GridLayout manager.

Figure 20.2 shows this code executing. Notice how the six components are pre-
sented as three rows of two elements. Each row has a label and a text field.

Continuing in this manner can lead to deeply nested structures that can be
difficult to construct and maintain. Often, it is better to construct separate sub-
structures, and then compose them into a larger structure. This is shown in
Example 03, which repeats the previous illustration. Note how the subpanel is
defined separately and then incorporated into the frame.

Barclay chap20.qxd 02/01/1904 10:01 PM Page 279

import groovy.swing.SwingBuilder
import javax.swing.*

import java.awt.*

// Create a builder
def sB = new SwingBuilder()

// Build the panel...
def mainPanel = {

sB.panel(layout : new GridLayout(3, 2, 5, 5)) {
label(text : ‘Last name:’, horizontalAlignment : JLabel.RIGHT)
textField(text : ‘’, columns : 10)
label(text : ‘Middle name:’, horizontalAlignment : JLabel.RIGHT)
textField(text : ‘’, columns : 10)
label(text : ‘First name:’, horizontalAlignment : JLabel.RIGHT)
textField(text : ‘’, columns : 10)

}
}

// ...and the frame
def frame = sB.frame(title : ‘Example03’, location : [100, 100],

size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE) {
mainPanel()

}

// Now show it
frame.pack()
frame.setVisible(true)

◆

280 C H A P T E R 20 GUI Builders

EXAMPLE 03
Incremental
assembly

EXAMPLE 04
Buttons

It is now relatively easy to incorporate more Swing components into the appli-
cation canvas. Example 04 includes two buttons. Pay attention to how the main
panel uses a BorderLayout manager. A BorderLayout manager employs a NORTH,
EAST, WEST, SOUTH, and CENTER arrangement to position, at most, five compo-
nents. In this case, we must specify where the subcomponents are to be placed.
The constraints parameter is used for this purpose, appearing on the
subassemblies.

import groovy.swing.SwingBuilder
import javax.swing.*

import java.awt.*

Barclay chap20.qxd 02/01/1904 10:01 PM Page 280

// Create a builder
def sB = new SwingBuilder()

// Build the button panel...
def buttonPanel = {

sB.panel(constraints : BorderLayout.SOUTH) {
button(text : ‘OK’)
button(text : ‘Cancel’)

}
}

// ...then the main panel...
def mainPanel = {

sB.panel(layout : new BorderLayout()) {
label(text : ‘Is this OK?’, horizontalAlignment : JLabel.CENTER, constraints :

BorderLayout.CENTER)
buttonPanel()

}
}

// ...and the frame
def frame = sB.frame(title : ‘Example04’, location : [100, 100],

size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE) {
mainPanel()

}

// Now show it
frame.pack()
frame.setVisible(true)

◆

20.1 swingbuilder 281

FIGURE 20.3 BorderLayout manager and buttons.

Figure 20.3 shows how this example appears. The text is placed in the central
region (with a default FlowLayout), while the buttons are given the SOUTH con-
straint.

Barclay chap20.qxd 02/01/1904 10:01 PM Page 281

In the next example, we attach event handlers to the buttons. An event handler
represents the action to perform when the button is pressed. Each button
pseudomethod call includes the actionPerformed parameter. This represents a
code block presented as a closure. In both cases, this is a simple print statement.
For example, when the OK button is pressed, the text “OK pressed” appears in
the console.

282 C H A P T E R 20 GUI Builders

EXAMPLE 05
Event handlers

import groovy.swing.SwingBuilder
import javax.swing.*

import java.awt.*

def sB = new SwingBuilder()

// Build the button panel...
def buttonPanel = {

sB.panel(constraints : BorderLayout.SOUTH) {
button(text : ‘OK’, actionPerformed : {

println ‘OK pressed’
})
button(text : ‘Cancel’, actionPerformed : {

println ‘Cancel pressed’
})

}
}

// ...then the main panel...
def mainPanel = {

sB.panel(layout : new BorderLayout()) {
label(text : ‘Is this OK?’, horizontalAlignment : JLabel.CENTER,

constraints : BorderLayout.CENTER)
buttonPanel()

}
}

// ...and the frame
def frame = sB.frame(title : ‘Example05’, location : [100, 100],

size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE) {
mainPanel()

}

// Now show it
frame.pack()
frame.setVisible(true)

◆

Barclay chap20.qxd 02/01/1904 10:01 PM Page 282

We take this further in Example 06 by using a closure to handle the event. This
can help to simplify the actionPerformed parameter by moving the code into
this handler. Here, we provide two handler closures, one for each button. The
two buttons are assembled from data in a List object. The two sub-Lists of
buttons have the text that decorates a button and the closure object that acts as
the button event handler.

20.1 swingbuilder 283

EXAMPLE 06
Event handler
methods

import groovy.swing.SwingBuilder
import javax.swing.*

import java.awt.*

// Handlers
def okHandler = {

println ‘OK pressed’
}

def cancelHandler = {
println ‘Cancel pressed’

}

// Buttons
def buttons = [[‘OK’, okHandler], [‘Cancel’, cancelHandler]]

// Create a builder
def sB = new SwingBuilder()

// Build the button panel...
def buttonPanel = {

sB.panel(constraints : BorderLayout.SOUTH) {
buttons.each { but ->

sB.button(text : but[0], actionPerformed : but[1])
}

}
}

// ...then the main panel...
def mainPanel = {

sB.panel(layout : new BorderLayout()) {
label(text : ‘Is this OK?’, horizontalAlignment : JLabel.CENTER,

constraints : BorderLayout.CENTER)
buttonPanel()

}
}

// ...and the frame
def frame = sB.frame(title : ‘Example06’, location : [100, 100],

size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE) {
mainPanel()

}

Barclay chap20.qxd 02/01/1904 10:01 PM Page 283

// Now show it
frame.pack()
frame.setVisible(true)

◆

Observe how the buttonPanel uses the each iterator to assemble the buttons
from the buttons object (a List of Lists). Here, we are mixing in normal
Groovy code with the builder markup. The closure associated with each can
comprise further Groovy statements or further builder markup. For the latter,
we must refer to the builder object sB to disambiguate it from other Groovy
code.

In the next example, we develop a simple application to convert a distance
measured in inches to the equivalent amount in centimeters. The program
operates with two text fields and a button. The number of inches is entered into
one of the text fields, the button is pressed, and the conversion is displayed in
the other text field. Example 07 is the code listing.

284 C H A P T E R 20 GUI Builders

EXAMPLE 07
Imperial to metric
converter

import groovy.swing.SwingBuilder
import javax.swing.*

import java.awt.*

// Create a builder
def sB = new SwingBuilder()

// properties
def inputText = null
def outputText = null

// Handlers
def doConvert = {

def text = inputText.getText()
def inches = text.toInteger()
def centimetres = 2.54 * inches
outputText.setText(centimeters.toString())

}

// Build the input panel...
def inputPanel = {

sB.panel() {
label(text : ‘Input the length in inches:’, horizontalAlignment : JLabel.RIGHT)
inputText = textField(text : ‘’, columns : 10)

}
}

Barclay chap20.qxd 02/01/1904 10:01 PM Page 284

// ...then the output panel...
def outputPanel = {

sB.panel() {
label(text : ‘Converted length in centimeters:’, horizontalAlignment : JLabel.RIGHT)
outputText = textField(text : ‘’, columns : 10, enabled : false)
button(text : ‘Convert’, actionPerformed : doConvert)

}
}

// ...and now the main panel
def mainPanel = {

sB.panel(layout : new GridLayout(2, 3, 5, 5)) {
inputPanel()
outputPanel()

}
}

// ...and the frame
def frame = sB.frame(title : ‘Example07’, location : [100, 100],

size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE) {
mainPanel()

}

// Now show it
frame.pack()
frame.setVisible(true)

◆

20.1 swingbuilder 285

Observe how, in the inputPanel, the textField is referenced by the variable
inputText. Similarly, the text field for the converted value is referenced by the vari-
able outputText. The actionPerformed parameter for the button invokes the event
handler closure doConvert, accessing these two values. The values are two
JTextField objects, representing the source of the input and the destination for the
output. Closure doConvert extracts the String from the input JTextField using the
method getText, does the conversion, and puts a String into the output
JTextField using the method setText. Figure 20.4 shows this program executing.

It is also worth also recalling (see Appendix B) how this script is enclosed
by a Java class. Variables defined in the script, such as inputText, are properties
of the enclosing class. Methods defined in the script, such as doConvert, are
methods of the enclosing class. As ever, the methods of a class can refer to the
properties defined in that same class. Hence, the method doConvert can refer to
the variables inputText and outputText.

Barclay chap20.qxd 02/01/1904 10:01 PM Page 285

20.2 lists and tables

A graphical application often employs lists and tables to present its data. The
Swing class JList represents a component for selecting one or more items from
a set of choices. The content of a list component is dynamic in that we may add
or remove items from the list. Two aspects of a JList are that it uses a data
model to represent the list data, and a selection model to determine how many
items may be picked from the list. When we add or remove items from the list,
we actually remove them from the underlying data model.

A demonstration of the next example is shown in Figure 20.5. The JList
component is wrapped by a JScrollPane to reduce the presentation size of the
list. On this occasion, the Remove button is active while the Add button is dis-
abled. If the Remove button is pressed, the selected item in the list is deleted. If
any text is entered into the text field, the Add button is enabled and, when
pressed, the content of the text field is inserted into the list.

The code for this is given in Example 08. Note the two button handlers
doRemove and doAdd. Their action is to remove the selected item from the list or
insert an item into the list. Both achieve this by removing from or adding to the
data model an object of the class DefaultListModel. Initially, this is populated
from a preset Groovy List entitled staffList.

Using a data model to back up a graphical component is a common
scheme and is referred to as the model–view–controller (the familiar MVC)

286 C H A P T E R 20 GUI Builders

FIGURE 20.4 Imperial to metric converter.

FIGURE 20.5 Lists.

Barclay chap20.qxd 02/01/1904 10:01 PM Page 286

architecture. The model part represents the data for the component. The view
part is the visual appearance of the component, while the controller represents
the user interaction with the component. This MVC architecture also applies
to text fields. The model part is referred to as its document. Here, we initial-
ize our staffNameTextField with an object of the class PlainDocument. An
object of the class StaffDocumentListener is registered with the document to
receive notifications of changes. Specifically, when text is entered into the
field, the Add button is enabled. When the text is removed, the Add button is
disabled.

import groovy.swing.SwingBuilder
import javax.swing.*

import javax.swing.event.*

import javax.swing.text.*

import java.awt.*

// properties
def staffList = null
def removeButton = null
def staffNameTextField = null

// Event handler for the Remove button
def doRemove = {

def listModel = staffList.getModel()
def index = staffList.getSelectedIndex()
def size = listModel.size()

listModel.remove(index)
if(size == 0)

removeButton.setEnabled(false)
else {

if(index == listModel.getSize())
index—

staffList.setSelectedIndex(index)
staffList.ensureIndexIsVisible(index)

}
}

// Event handler for the Add button
def doAdd = {

def listModel = staffList.getModel()
def staffName = staffNameTextField.getText()

if(staffName == ‘’ ⎪⎪ listModel.contains(staffName)) {
Toolkit.getDefaultToolkit().beep()

20.2 lists and tables 287

EXAMPLE 08
A List component

Barclay chap20.qxd 02/01/1904 10:01 PM Page 287

staffNameTextField.requestFocusInWindow()
staffNameTextField.selectAll()
return

}

def index = staffList.getSelectedIndex()
index = (index == −1) ? 0 : 1 + index

listModel.insertElementAt(staffName, index)

staffNameTextField.requestFocusInWindow()
staffNameTextField.setText(‘’)

staffList.setSelectedIndex(index)
staffList.ensureIndexIsVisible(index)

}

// ---
// Implementation for an observer to register to receive
// notifications of changes to a text document.

class StaffDocumentListener implements DocumentListener {

void changedUpdate(DocumentEvent event) {
if(event.document.length <= 0)

button.setEnabled(false)
}

void insertUpdate(DocumentEvent event) {
button.setEnabled(true)

}

void removeUpdate(DocumentEvent event) {
if(event.document.length <= 0)

button.setEnabled(false)
}

// -----properties ----------------

def button

}

// ---
// Specialized DefaultListModel with a parameterized
// constructor

288 C H A P T E R 20 GUI Builders

Barclay chap20.qxd 02/01/1904 10:01 PM Page 288

class StaffListModel extends DefaultListModel {

StaffListModel(list) {
super()
list.each { item -> this.addElement(item) }

}
}

// Create a builder
def sB = new SwingBuilder()

// Panel carrying the staff list
def listPanel = {

sB.panel(constraints : BorderLayout.CENTER) {
scrollPane() {

def sList = [‘Ken Barclay’, ‘John Savage’,
‘Sally Smith’, ‘Peter Thomson’,
‘John Owens’, ‘Neil Urquhart’,
‘Jessie Kennedy’, ‘Jon Kerridge’
]

staffList = list(model : new StaffListModel(sList),
selectionMode : ListSelectionModel.SINGLE_SELECTION,
selectedIndex : 0, visibleRowCount : 4)

}
}

}

// Add/Remove buttons and text field
def buttonPanel = {

sB.panel(constraints : BorderLayout.SOUTH) {
removeButton = button(text : ‘Remove’, actionPerformed : doRemove)
def plainDocument = new PlainDocument()
staffNameTextField = textField(text : ‘’, columns : 20,

document : plainDocument, actionPerformed : doAdd)
def addButton = button(text : ‘Add’, enabled : false, actionPerformed : doAdd)
def documentListener = new StaffDocumentListener(button : addButton)
plainDocument.addDocumentListener(documentListener)

}
}

// Now the main panel...
def mainPanel = {

sB.panel(layout : new BorderLayout()) {
listPanel()
buttonPanel()

}
}

20.2 lists and tables 289

Barclay chap20.qxd 02/01/1904 10:01 PM Page 289

// ...and the frame
def frame = sB.frame(title : ‘Example08’, location : [100, 100],

size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE) {
mainPanel()

}

// Now show it
frame.pack()
frame.setVisible(true)

◆

290 C H A P T E R 20 GUI Builders

EXAMPLE 09
A table component

The next example demonstrates setting up a JTable. A JTable is used to present its
data as a two-dimensional grid. Like the JList component, a JTable relies on var-
ious other classes to support its operation. Again, an MVC architecture is
employed. The class DefaultTableModel realizes the data for a JTable. In fact, the
SwingBuilder object uses a specialized version of groovy.model.DefaultTableModel
for this purpose. In Example 09, we see that this is initialized with a List of Maps
entitled staffList. A JTable also requires labels for the columns, and this is pro-
vided by the elements closureColumn. The closure columns are added to the spe-
cial table model. The closure columns specify the column name and how elements
are accessed from a column. Here, closures simply extract from the row the map
value according to the key. Figure 20.6 shows Example 09 executing.

import groovy.swing.SwingBuilder
import javax.swing.*

import javax.swing.table.*

import java.awt.*

// Create a builder
def sB = new SwingBuilder()

// Panel carrying the staff list
def tablePanel = {

sB.panel(constraints : BorderLayout.CENTER) {
scrollPane() {

table(selectionMode : ListSelectionModel.SINGLE_SELECTION) {
def staffList = [[forename : ‘Ken’, surname : ‘Barclay’, room : ‘C48’, telephone : 2745],

[forename : ‘John’, surname : ‘Savage’, room : ‘C48’, telephone : 2746],
[forename : ‘Sally’, surname : ‘Smith’, room : ‘C46’, [telephone : 2742],
[forename : ‘Peter’, surname : ‘Thomson’, room : ‘D51’, telephone : 2781],

Barclay chap20.qxd 02/01/1904 10:01 PM Page 290

[forename : ‘John’, surname : ‘Owens’, roo : ‘C47’,telephone : 2744],
[forename : ‘Neil’, surname : ‘Urquhart’, room : ‘C66’, telephone : 2655],
[forename : ‘Jessie’, surname : ‘Kennedy’, room : ‘C50’, telephone : 2772],
[forename : ‘Jon’, surname : ‘Kerridge’, room : ‘C36’, telephone : 2777]
]

tableModel(list : staffList) {
closureColumn(header : ‘First name’, read : {row -> return row.forename})
closureColumn(header : ‘Last name’, read : {row -> return row.surname})
closureColumn(header : ‘Room’, read : {row -> return row.room})
closureColumn(header : ‘Tel extension’, read : {row -> return row.telephone})

}
}

}
}

}

20.2 lists and tables 291

FIGURE 20.6 JTable component.

Barclay chap20.qxd 02/01/1904 10:01 PM Page 291

// Now the main panel...
def mainPanel = {

sB.panel(layout : new BorderLayout()) {
tablePanel()

}
}

// ...and the frame
def frame = sB.frame(title : ‘Example09’, location : [100, 100],

size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE) {
mainPanel()

}

// Now show it
frame.pack()
frame.setVisible(true)

◆

292 C H A P T E R 20 GUI Builders

EXAMPLE 10
Buttons and text
area

20.3 box and boxlayout classes

The BoxLayout class is a layout manager that produces one row or column of com-
ponents. It is especially useful for producing ribbons of buttons. The Box class is a
light-weight container prepared with a BoxLayout manager. The Box class provides
several conveniences for including components in a boxed layout. Using a Box is
generally more convenient than creating a panel that is controlled with a
BoxLayout manager. The pseudomethods hbox and vbox are used to create a Box of
horizontal components and a Box of vertical components, respectively. Figure 20.7
demonstrates a vertical Box holding a strip of buttons.

In the listing given in Example 10, the class FixedButton (FixedTextArea)
is used to create a specialized JButton (JTextArea) of a fixed size. Observe how
we create instances of these classes and wrap them in the pseudomethod widget.
The widget method is used to create a specialized Swing component.

The figure is also populated with a multiline text area. It is anticipated that the
buttons will provide some application functionality, producing output into this
area. The text area in this example is disabled, so it simply acts as a display panel.

import groovy.swing.SwingBuilder
import javax.swing.*

import java.awt.*

// Button of set size
class FixedButton extends JButton {

Barclay chap20.qxd 02/01/1904 10:01 PM Page 292

Dimension getMinimumSize() { return BUTTONSIZE }
Dimension getMaximumSize() { return BUTTONSIZE }
Dimension getPreferredSize() { return BUTTONSIZE }

private static final BUTTONSIZE = new Dimension(80, 30)
}

// Text area of set size
class FixedTextArea extends JTextArea {

Dimension getMinimumSize() { return TEXTAREASIZE }
Dimension getMaximumSize() { return TEXTAREASIZE }
Dimension getPreferredSize() { return TEXTAREASIZE }

private static final TEXTAREASIZE = new Dimension(400, 400)
}

// Create a builder
def sB = new SwingBuilder()

// Now the main panel...
def mainPanel = {

sB.panel(layout : new BorderLayout()) {
vbox(constraints : BorderLayout.WEST) {

20.3 box and boxlayout classes 293

FIGURE 20.7 Box of buttons.

Barclay chap20.qxd 02/01/1904 10:01 PM Page 293

def buttons = [‘One’, ‘Two’, ‘Three’, ‘Four’]
buttons.each { but ->
sB.widget(new FixedButton(text : but))
}

}
panel(constraints : BorderLayout.CENTER) {

widget(new FixedTextArea(enabled : false))
}

}
}

// ...and finally the frame
def frame = sB.frame(title : ‘Example10’, location : [100, 100],

size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE) {
mainPanel()

}

// Now show it
frame.pack()
frame.setVisible(true)

◆

294 C H A P T E R 20 GUI Builders

Appendix L illustrates other Swing components presented through the
SwingBuilder. Together they illustrate how easy it is to develop a graphical
application using Groovy’s SwingBuilder.

20.4 exercises

The following exercises are presented as use cases for a small project. The user
should read further aspects of the SwingBuilder class described in Appendix L
before proceeding.

1. Using the knowledge described here and in Appendix L, develop a
graphical application to act as an integrated development environment
(IDE) for preparing, compiling, and running Groovy scripts. The IDE
should appear as shown in Figure 20.8. In this first version, put simple
print statements in each of the event handlers, as shown in Example
06. Use System.exit(0) as the code for the Exit handler (see Example
01, Appendix L), so that the application closes correctly.

Barclay chap20.qxd 02/01/1904 10:01 PM Page 294

The main panel should be organized as a split pane. The upper
panel will act as the editor panel. It will be organized as a tabbed pane,
where each tab will be associated with a Groovy source file to be
edited, compiled, or executed. The lower panel is the console in which
the running script interacts with the user.

2. Now implement the handler for the menu File + New. The text area
for preparing the Groovy script should be a scrolled editor pane.
Initially, the tab is decorated as Edit1, Edit2, and so on. Add a special-
ized DocumentListener to the editor pane so that if the content of the
text document is modified, then the tab is decorated with an * as in
*Edit1. See Figure 20.9.

Now implement the handler for File + Open. Here, use a
JFileChooser to invite the user to nominate the *.groovy file to open.
The file is presented in a scrolled editor pane with the tab having the
file name. Again, associate a DocumentListener as for a new file.

Continue by implementing File + SaveAs and File + Save menus.
The handler for File + Save will call the File + SaveAs handler if the
tab includes Edit or *Edit as the tab prefix. Again, a JFileChooser will
invite the user to nominate the name and location of the file. This will

20.4 exercises 295

FIGURE 20.8 Initial IDE.

Barclay chap20.qxd 02/01/1904 10:01 PM Page 295

apply if the tab is Edit or *Edit. Otherwise, the name in the tab is
used to update the current file.

3. Arrange for the application to include the file name and its location in
the title bar. Add a ChangeListener to the tabbed pane, so that when a
different tab is selected by the user, the title bar is updated to reflect
the new file that is activated. Additionally, add a MouseListener to the
tabbed pane, so that when the user presses the right mouse over a tab,
then a popup menu invites the user to close the tab and its file.

4. Introduce handlers for Edit + Cut, Edit + Copy and Edit + Paste.

5. Introduce a specialized version of the class DropTarget so that we can
drag and drop *.groovy files onto the IDE.

A finished version for this project is given in the distribution
src\guide directory.

296 C H A P T E R 20 GUI Builders

FIGURE 20.9 Editor tab.

Barclay chap20.qxd 02/01/1904 10:01 PM Page 296

297

C H A P T E R 21
template engines

The mail merge features found in a word processor are used to merge form let-
ters with names and addresses from a mailing list. A form letter consists of static
text, such as the body of the letter, and place-holders for those parts of the let-
ter that are to be replaced. Typically, this might include the name and address
of the recipient. The data source includes the values for the place-holders for
each individual to receive the letter. Such merge facilities can greatly reduce the
burden on the user, especially when the amount of data is large and comprises
various elements.

Groovy’s template engine operates like a mail merge but is much more gen-
eral. Essentially, there is no restriction on the nature of the form document or
the source of the merged data.

21.1 strings

We know from Chapter 3 that a String enclosed in single quotes is taken liter-
ally, while a String in double quotes is interpreted. Hence, the following
comments demonstrate the output from the two print statements:

def name = “Ken”
println ‘My name is: ${name}’ // My name is: ${name}
println “My name is: ${name}” // My name is: Ken

In effect, the interpretation of double-quoted strings is similar to the action of
a template engine. Here, the expression ${name} is replaced by the actual value
of the name variable.

Barclay chap21.qxd 02/01/1904 10:01 PM Page 297

21.2 templates

Consider the simple template appearing in the file book.template. This file con-
tains the form for an XML element describing a single book:

<book>
<author>${author}</author>
<title>${title}</title>
<publisher>${publisher}</publisher>
<isbn number=”${isbn}”/>

</book>

As usual, the substituted values are declared using the ${ } notation. Mapping
of the place-holders to actual values is relatively simple through a binding and a
SimpleTemplateEngine. The binding is a Map with the place-holders as keys and
the replacements as the values. The code for its usage is shown in Example 01.

import groovy.text.*

import java.io.*

def file = new File(‘book.template’)
def binding = [‘author’ : ‘Ken Barclay’,

‘title’ : ‘Groovy’,
‘publisher’ : ‘Elsevier’,
‘isbn’ : ‘1234567890’

]
def engine = new SimpleTemplateEngine()
def template = engine.createTemplate(file)
def writable = template.make(binding)
println writable

When we execute this program, we replace ${author} in the template with the
value Ken Barclay. The final output produced by the application is:

<book>
<author>Ken Barclay</author>
<title>Groovy</title>
<publisher>Elsevier</publisher>
<isbn number=”1234567890”/>

</book>

◆

A variation on this example delivers the merged result to a file. In Example 01,
the template object is of the class Writable. In the print statement, the message

298 C H A P T E R 21 Template Engines

EXAMPLE 01
Mapping values for
a simple template

Barclay chap21.qxd 02/01/1904 10:01 PM Page 298

21.2 templates 299

toString is called implicitly on this object to display its value. As we show in
Example 02, we can also send the message writeTo to persist the result in a file.

import groovy.text.*

import java.io.*

def file = new File(‘book.template’)
def binding = [‘author’ :‘Ken Barclay’,

‘title’ :‘Groovy’,
‘publisher’ :‘Elsevier’,
‘isbn’ :‘1234567890’

]
def writable = new SimpleTemplateEngine().createTemplate(file).make(binding)
def destination = new FileWriter(‘book.xml’)
writable.writeTo(destination)
destination.flush()
destination.close()

◆

We can also call upon the scripting syntax used by JavaServer Pages (JSP)
(Bergsten, 2003). Two scripting elements from JSP that we can use are JSP
scriplets (denoted by <% ... %>) and JSP expressions (denoted as <%= ... %>).
The scriplet is used to add a block of code, including control flow statements,
print statements, and variables. Consider the file library.template:

<library>
<% for(bk in books) { %>

<book>
<author>${bk.value[0]}</author>
<title>${bk.value[1]}</title>
<publisher>${bk.value[2]}</publisher>
<isbn number=’${bk.key}’/>

</book>”
<% } %>
</library>

Here, the scriplet includes a loop that iterates through the books collection. It is a
Map collection and, for each key/value entry, the key is the book’s ISBN, and the
corresponding value is a list carrying the author, title, and publisher, in that order.

To bind values, we need to provide such a Map as that shown in Example 03.
Note how a binding for ‘books’ associates with the Map referenced by the
variable books.

EXAMPLE 02
Persisting a
merged template

Barclay chap21.qxd 02/01/1904 10:01 PM Page 299

import groovy.text.*

import java.io.*

def file = new File(‘library.template’)
def books = [‘1234567890’ : [‘Ken Barclay’, ‘Groovy’, ‘Elsevier’],

‘0750660989’ : [‘John Savage’, ‘OOD with UML and JAVA’, ‘Elsevier’],
‘0130373265’ : [‘Ken Barclay’, ‘C Programming’, ‘Prentice Hall’]
]

def writable = new SimpleTemplateEngine().createTemplate(file).make([‘books’ : books])
println writable

When we execute this program against the template file, the output produced
is:

<library>
<book>

<author>Ken Barclay</author>
<title>C Programming</title>
<publisher>Prentice Hall</publisher>
<isbn number=’0130373265’/>

</book>
<book>

<author>John Savage</author>
<title>OOD with UML and JAVA</title>
<publisher>Elsevier</publisher>
<isbn number=’0750660989’/>

</book>
<book>

<author>Ken Barclay</author>
<title>Groovy</title>
<publisher>Elsevier</publisher>
<isbn number=’1234567890’/>

</book>

</library>

◆

300 C H A P T E R 21 Template Engines

EXAMPLE 03
Merging a
collection

A simple adaptation of the preceding example is to make the bindings from a
database. The books table in the booksDB database has rows containing a book
ISBN, author, title, and publisher. Additionally, we have a template for gener-
ating HTML in the file library.html.template:

Barclay chap21.qxd 02/01/1904 10:01 PM Page 300

<html>
<head>

<title>Library</title>
</head>
<body>

<table border=”1”>
<% sql.eachRow(‘select * from books’) { bk -> %>

<tr>
<td>${bk.author}</td>
<td>${bk.title}</td>
<td>${bk.publisher}</td>
<td>${bk.isbn}</td>

</tr>
<% } %>

</table>
</body>

</html>

The revised code is:

import groovy.sql.*

import groovy.text.*

import java.io.*

def DB = ‘jdbc:derby:booksDB’
def USER = ‘’
def PASSWORD = ‘’
def DRIVER = ‘org.apache.derby.jdbc.EmbeddedDriver’

// Connect to database
def sql = Sql.newInstance(DB, USER, PASSWORD, DRIVER)

// Create the template
def file = new File(‘library.html.template’)
def writable = new SimpleTemplateEngine().createTemplate(file).make([‘sql’ : sql])
println writable

◆

21.2 templates 301

EXAMPLE 04
Template
instantiation from
a database

Class Sql has no suitable constructor to initialize an instance from a JDBC con-
nection URL, username, password, and driver class name. Here, we use the
helper method newInstance. The output we get is:

Barclay chap21.qxd 02/01/1904 10:01 PM Page 301

<html>
<head>

<title>Library</title>
</head>
<body>

<table border=”1”>
<tr>

<td>Ken Barclay</td>
<td>C Programming</td>
<td>Prentice Hall</td>
<td>0130373265</td>

</tr>
<tr>

<td>John Savage</td>
<td>OOD with UML and JAVA</td>
<td>Elsevier</td>
<td>0750660989</td>

</tr>
<tr>

<td>Ken Barclay</td>
<td>Groovy</td>
<td>Elsevier</td>
<td>1234567890</td>

</tr>
</table>

</body>
</html>

21.3 exercises

1. Modify the code in Example 01 and comment out the binding for the
author as shown in the following example. Now, execute the program and
explain its effect.

def binding = [//’author’ :‘Ken Barclay’,

2. Using the original code from Example 01, modify the data file as shown
in the following example. Now, execute the program and explain its
effect.

<author>${authorname}</author>

302 C H A P T E R 21 Template Engines

Barclay chap21.qxd 02/01/1904 10:01 PM Page 302

303

C H A P T E R 22
case study: a l ibrary
application ⁽gui ⁾

Using knowledge gained in Chapter 20 and Appendix L, in this chapter, we
revisit the library case study of Chapter 18. Our aim is to give the application
a more modern look and feel by adding a GUI. Happily, we reap the benefit of
its MVC architecture by not having to change any of the model classes.
Similarly, the decision to use a DAO means that no changes to classes that access
the database are required. Finally, Groovy’s SwingBuilder makes the construc-
tion of the GUI relatively easy.

22.1 iteration 1 : prototype the gui

The aim of this iteration is to demonstrate that we can replace the text-based
menu developed in the case study of Chapter 18 with a GUI. Our intention is
that it should mirror the GUI developed in Example 10 of Chapter 20.
Therefore, we replace the options presented by the menu with suitably labeled
FixedButtons and replace Action class methods with event handlers.

The model classes (Library, Publication, Book, Journal, Borrower) and
the DAO implementation (LibraryDaoJdbc) require no changes. This makes
the coding task relatively straightforward. The code for the GUI is shown the
listing of Library 01.

import groovy.swing.*

import groovy.sql.*

import javax.swing.*

import java.awt.*

LIBRARY 01
User interface

Barclay chap22.qxd 02/01/1904 10:02 PM Page 303

class FixedButton extends JButton {

Dimension getMaximumSize() { return BUTTONSIZE }
Dimension getMinimumSize() { return BUTTONSIZE }
Dimension getPreferredSize() { return BUTTONSIZE }

private static final BUTTONSIZE = new Dimension(250, 30)
}

class FixedTextArea extends JTextArea {

Dimension getMaximumSize() { return TEXTAREASIZE }
Dimension getMinimumSize() { return TEXTAREASIZE }
Dimension getPreferredSize() { return TEXTAREASIZE }

private static final TEXTAREASIZE = new Dimension(600, 400)
}

// Event handlers
def doExit = {

System.exit(0)
}

// Create the builder
def sB = new SwingBuilder()

// Create the button panel
def buttonPanel = {

sB.panel(constraints : BorderLayout.WEST) {
vbox() {

widget(new FixedButton(text : ‘Exit’), actionPerformed : doExit)
widget(new FixedButton(text : ‘Add new publication’))
widget(new FixedButton(text : ‘Display stock’))
widget(new FixedButton(text : ‘Display publications available for loan’))
widget(new FixedButton(text : ‘Display publications on loan’))
widget(new FixedButton(text : ‘Register new borrower’))
widget(new FixedButton(text : ‘Display borrowers’))
widget(new FixedButton(text : ‘Lend one publication’))
widget(new FixedButton(text : ‘Return one publication’))

}
}

}
// Create display panel

def displayPanel = {
sB.panel(constraints : BorderLayout.CENTER) {

widget(new FixedTextArea(enabled : false))
}

}

304 C H A P T E R 22 Case Study: A Library Application (GUI)

Barclay chap22.qxd 02/01/1904 10:02 PM Page 304

22.1 iteration 1 : prototype the gui 305

// Create status panel
def statusPanel = {

sB.panel(constraints : BorderLayout.SOUTH) {
label(text : ‘Status’)
textField(text : ‘’, columns : 60, enabled : false)

}
}

// Assemble main panel
def mainPanel = {

sB.panel(layout : new BorderLayout()) {
sB.panel(layout : new BorderLayout(), constraints : BorderLayout.CENTER) {

buttonPanel()
displayPanel()

}
statusPanel()

}
}

// Main frame
def frame = sB.frame(title : ‘Library application’, location : [50, 50], size : [800, 500],

defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE) {
mainPanel()

}

frame.pack()
frame.setVisible(true)

Notice that much of the complexity of the construction of the GUI is simpli-
fied by using panels of panels to assemble its various components and that we
use BorderLayout managers to position the elements.

When we execute this script, we see that the GUI comprises a vertical strip
of buttons that correspond to the menu items in the simple text interface of the
previous case study. To the right is a text area into which the program can deliver
the output. At the bottom of the window is a status panel used to present any
user information. Figure 22.1 illustrates its appearance.

To complete this iteration, we put a single event handler behind the Exit
button. Happily, it behaves as expected, and we proceed to the next iteration
where we provide more handlers.

Barclay chap22.qxd 02/01/1904 10:02 PM Page 305

22.2 iteration 2 : implement the
handlers

The application now requires event handlers to provide the required function-
ality. The aim of this iteration is to put most of them in place. The remainder
are left as an exercise for the reader. Similarly, we display error messages in the
status panel that originate from the Library, but we leave error detection by the
GUI as an exercise for the reader (see Section 22.3).

In the previous iteration, we were satisfied that we could correctly introduce
an event handler for the Exit button. The other buttons, of course, are labeled
to correspond to the application use cases. We anticipate that a button’s handler
will send messages to the Library just as the Action object in the previous case
study. In effect, the logic of the Action class methods becomes the code for the
application event handlers. The listing for Library 02 illustrates.

import groovy.swing.*

import groovy.sql.*

import javax.swing.*

import java.awt.*

import org.springframework.context.support.*

def applicationContext = new ClassPathXmlApplicationContext (‘config.xml’)
def library = applicationContext.getBean(‘lib’)

306 C H A P T E R 22 Case Study: A Library Application (GUI)

FIGURE 22.1 Visual interface.

LIBRARY 02
Event handlers

Barclay chap22.qxd 02/01/1904 10:02 PM Page 306

// properties
def statusTextField = null
def displayTextArea = null

// helper closure

def displayPublication = { indent, pub ->
displayTextArea.append(indent)
if(pub instanceof Book)

displayTextArea.append(“Book: ${pub.catalogNumber}: ${pub.title} by: ${pub.author}” + ‘\n’)
else

displayTextArea.append(“Journal : ${pub.catalogNumber}: ${pub.title} edited by:”+
“${pub.editor}” + ‘\n’)

statusTextField.setText(‘’)
}

// Event handlers
def doExit = {

System.exit(0)
}

def doAddNewPublication = {
def message
def pubType = JOptionPane.showInputDialog(null, ‘Add a book (B) or journal (J)’,

‘Add new publication’, JOptionPane.QUESTION_MESSAGE)
if(pubType == ‘B’ ⎪⎪ pubType == ‘b’) {

def catalogNumber = JOptionPane.showInputDialog(null, ‘Enter book catalog number’,
‘Add new publication’, JOptionPane.QUESTION_MESSAGE)

def title = JOptionPane.showInputDialog(null, ‘Enter book title’,‘Add new publication’,
JOptionPane.QUESTION_MESSAGE)

def author = JOptionPane.showInputDialog(null, ‘Enter book author’, ‘Add new publication’,
JOptionPane.QUESTION_MESSAGE)

message = library.addPublication(new Book(catalogNumber : catalogNumber, title : title,
author : author))

statusTextField.setText(message)

} else if(pubType == ‘J’ ⎪⎪ pubType == ‘j’) {
def catalogNumber = JOptionPane.showInputDialog(null, ‘Enter journal catalog number’,

‘Add new publication’, JOptionPane.QUESTION_MESSAGE)
def title = JOptionPane.showInputDialog(null, ‘Enter journal title’, ‘Add new publication’,

JOptionPane.QUESTION_MESSAGE)
def editor = JOptionPane.showInputDialog(null, ‘Enter journal editor’, ‘Add new publication’,

JOptionPane.QUESTION_MESSAGE)

message = library.addPublication(new Journal(catalogNumber : catalogNumber, title: title,
editor : editor))

22.2 iteration 2 : implement the handlers 307

Barclay chap22.qxd 02/01/1904 10:02 PM Page 307

statusTextField.setText(message)

} else
JOptionPane.showMessageDialog(null, ‘Incorrect response (B or J)’, ‘Add new publication’,

JOptionPane.ERROR_MESSAGE)
}

def doDisplayStock = {
def stock = library.loanStock
displayTextArea.append(‘Library (full stock inventory):’ + ‘\n’)
displayTextArea.append(‘===============================’ + ‘\n’)

stock.each { catNo, pub ->
displayPublication(‘’, pub)

}

statusTextField.setText(‘’)
}

def doDisplayPublicationsAvailableForLoan = {
def stock = library.loanStock
displayTextArea.append(‘Library (publications available for loan):’ + ‘\n’)
displayTextArea.append(‘==’ + ‘\n’)

stock.each { catNo, pub ->
if(pub.borrower != null) {

displayPublication(‘’, pub)
}

}

statusTextField.setText(‘’)
}

def doDisplayPublicationsOnLoan = {
def stock = library.loanStock
displayTextArea.append(‘Library (publications on loan):’ + ‘\n’)
displayTextArea.append(‘===============================’ + ‘\n’)

stock.each { catNo, pub ->
if(pub.borrower != null) {

displayPublication(‘’, pub)
}

}

statusTextField.setText(‘’)
}

308 C H A P T E R 22 Case Study: A Library Application (GUI)

Barclay chap22.qxd 02/01/1904 10:02 PM Page 308

def doRegisterNewBorrower = {
def message
def membershipNumber = JOptionPane.showInputDialog(null,

‘Enter borrower membership number’,‘Register new borrower’,
JOptionPane.QUESTION_MESSAGE)

def name = JOptionPane.showInputDialog(null, ‘Enter borrower name’, ‘Register new borrower’,
JOptionPane.QUESTION_MESSAGE)

message = library.registerBorrower(new Borrower(membershipNumber: membershipNumber, name : name))

statusTextField.setText(message)
}

def doDisplayBorrowers = {
def stock = library.loanStock
def borrowers = library.borrowers
displayTextArea.append(‘Library (all borrowers):’ + ‘\n’)
displayTextArea.append(‘========================’ + ‘\n’)

borrowers.each { memNo, bor ->
if(bor.membershipNumber != 0) {

displayTextArea.append(“Borrower: ${bor.membershipNumber}; ${bor.name}” + ‘\n’)

def displayed = false
stock.each { catNo, pub ->

if(pub.borrower == bor)
displayPublication(‘ ‘, pub)
displayed = true

}
if(displayed == false)

displayTextArea.append(‘ None’)
}

}

statusTextField.setText(‘’)
}

def doLendPublication = {
def message
def catalogNumber = JOptionPane.showInputDialog(null, ‘Enter publication catalog number’,

‘Lend publication’, JOptionPane.QUESTION_MESSAGE)
def membershipNumber = JOptionPane.showInputDialog(null,

‘Enter borrower membership number’, ‘Lend publication’,
JOptionPane.QUESTION_MESSAGE)

message = library.lendPublication(catalogNumber, membershipNumber)

statusTextField.setText(message)
}

22.2 iteration 2 : implement the handlers 309

Barclay chap22.qxd 02/01/1904 10:02 PM Page 309

def doReturnPublication = {
def message
def catalogNumber = JOptionPane.showInputDialog(null, ‘Enter publication catalog number’,

‘Return publication’, JOptionPane.QUESTION_MESSAGE)

library.returnPublication(catalogNumber)

statusTextField.setText(message)
}

// Create the builder
def sB = new SwingBuilder()

// Create the button panel
def buttonPanel = {

sB.panel(constraints : BorderLayout.WEST) {
vbox() {

widget(new FixedButton(text : ‘Exit’), actionPerformed : doExit)
widget(new FixedButton(text : ‘Add new publication’),

actionPerformed : doAddNewPublication)
widget(new FixedButton(text : ‘Display stock’),

actionPerformed : doDisplayStock)
widget(new FixedButton(text : ‘Display publications available for loan’),

actionPerformed : doDisplayPublicationsAvailableForLoan)
widget(new FixedButton(text : ‘Display publications on loan’),

actionPerformed : doDisplayPublicationsOnLoan)
widget(new FixedButton(text : ‘Register new borrower’),

actionPerformed : doRegisterNewBorrower)
widget(new FixedButton(text : ‘Display borrowers’),

actionPerformed : doDisplayBorrowers)
widget(new FixedButton(text : ‘Lend one publication’),

actionPerformed : doLendPublication)
widget(new FixedButton(text : ‘Return one publication’),

actionPerformed : doReturnPublication)
}

}
}

// Create display panel
def displayPanel = {

sB.panel(constraints : BorderLayout.CENTER) {
sB.scrollPane() {

def displayTextArea = new FixedTextArea(enabled : false)
sB.widget(new JScrollPane(displayTextArea))

}
}

310 C H A P T E R 22 Case Study: A Library Application (GUI)

Barclay chap22.qxd 02/01/1904 10:02 PM Page 310

}

// Create status panel
def statusPanel = {

sB.panel(constraints : BorderLayout.SOUTH) {
label(text : ‘Status’)
def statusTextField = textField(text : ‘’, columns : 60, enabled : false)

}
}

// Assemble main panel
def mainPanel = {

sB.panel(layout : new BorderLayout()) {
sB.panel(layout : new BorderLayout(), constraints : BorderLayout.CENTER) {

buttonPanel()
displayPanel()

}
statusPanel()

}
}

// Main frame
def frame = sB.frame(title : ‘Library application’, location : [50, 50], size : [800, 500],

defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE) {
mainPanel()

}

frame.pack()

22.2 iteration 2 : implement the handlers 311

frame.setVisible(true)

Notice that we have an Add new publication button rather than one to add a
book and another to add a journal. This is just a pragmatic decision to decrease
the number of buttons on the GUI and makes no real difference to the under-
lying software. However, we must amend the configuration file to reflect the fact
that we no longer have an Action object (the event handlers replace it). This is
easily accomplished by removing:

<bean id=”act” class=”Action”>
<property name=”library”>

<ref local=”lib”/>
</property>

Barclay chap22.qxd 02/01/1904 10:02 PM Page 311

</bean>

from the file. Otherwise, the logic is unchanged from the case study of Chapter 18.
A typical output is shown in Figure 22.2.

As usual, our last task is to test the application. Functional use case testing
is just as before, that is, we visually check that the various outputs are as
expected. However, there is a small problem that arises with the unit tests.
Rather than access the Library through an Action object as in the previous case
study, we now access it directly (the Action object does not exist). This requires
a few small changes to the LibraryTest and LibraryDaoJdbcTest classes. For
example, we now have:

// class: LibraryTest
void setUp(){

def applicationContext = new ClassPathXmlApplicationContext (‘config.xml’)
library = applicationContext.getBean(‘lib’)

library.loanStock = [:]
library.borrowers = [:]

library.dao.clearAll()
// ...

}

and

312 C H A P T E R 22 Case Study: A Library Application (GUI)

FIGURE 22.2 The GUI with handlers in place.

Barclay chap22.qxd 02/01/1904 10:02 PM Page 312

// class: LibraryDaoJdbcTest
private getLibraryObject() {

def applicationContext = new ClassPathXmlApplicationContext (‘config.xml’)
return applicationContext.getBean(‘lib’)

}

Happily, all of the tests pass and we consider this application complete. Full list-
ings of the Groovy scripts and classes are available on the book website.

22.3 exercises

1. In the second iteration, we omitted some important use cases. For
example, the GUI should support the following:

● Remove a publication

● Display a particular publication

● Display selected publications

● Display a particular borrower

● Display selected borrowers

Using the code from the Action class of Chapter 18, implement one or
more of these use cases.

2. In the second iteration, we omitted some error detection code in the
GUI. For example, the GUI should report an error when:

● A particular publication for display does not exist.

● No publication in publications selected for display exists.

● A particular borrower for display does not exist.

● No borrower in borrowers selected for display exists

Using the code from the Action class of Chapter 18, implement one or
more of these error checks.

22.3 exercises 313

Barclay chap22.qxd 02/01/1904 10:02 PM Page 313

def buttonPanel = {
sB.panel(constraints : BorderLayout.WEST) {

vbox() {
widget(new FixedButton(text : ‘Exit’), actionPerformed : doExit)
widget(new FixedButton(text : ‘Add new publication’))
widget(new FixedButton(text : ‘Display stock’))
widget(new FixedButton(text : ‘Display publications available for loan’))
widget(new FixedButton(text : ‘Display publications on loan’))
widget(new FixedButton(text : ‘Register new borrower’))
widget(new FixedButton(text : ‘Display borrowers’))

widget(new FixedButton(text : ‘Lend one publication’))
widget(new FixedButton(text : ‘Return one publication’))

}
}

}

314 C H A P T E R 22 Case Study: A Library Application (GUI)

Although it makes our intention obvious, it is rather repetitive. Recode it
using the approach illustrated in Example 06 of Chapter 20. It uses a data
structure that is a List of Lists, each of which holds a button’s text as a
String and a closure object that acts as its event handler.

3. Reflect on the effort required to make updates. Give a least four good rea-
sons why Groovy is useful in this context.

4. In Library 01, we create the button panel with the following code:

Barclay chap22.qxd 02/01/1904 10:02 PM Page 314

315

C H A P T E R 23
server-side
programming

Java servlets are a central technology of server-side Java development. A servlet
is a small pluggable extension to a web server that enhances the server’s func-
tionality. A servlet is used to create dynamic content for a webpage, in effect cre-
ating a web application. Many organizations have redeployed their business
applications as web applications using servlet technology.

A servlet is a server extension provided by a Java class that can be loaded
dynamically by the web server. Today, all major web servers provide support for
servlets. As a consequence, servlets are portable across web servers, as well operat-
ing environments due to the universal availability of Java on all operating systems.

JavaServer Pages (JSP) is closely associated with servlets. A JSP page is a reg-
ular web page combining static markup with JSP elements that generate the
parts that differ among requests. When a JSP page is requested, the static con-
tent is merged with the dynamic content produced from the JSP elements. The
result is then returned to the browser. A web server that supports JSP first con-
verts the JSP page into a servlet, in what is known as the translation phase. All
static content essentially remains unchanged. All JSP elements are converted to
Java code, which provides for the dynamic behavior.

In this chapter, we consider Groovlets and GSPs, Groovy’s equivalents to Java
servlets and JSPs. Once again, we note how Groovy simplifies servlets and JSPs.

23.1 servlets

Because servlets are written in Java, they are portable across operating systems
and across server implementations. Servlets can harness all the features of the

Barclay chap23.qxd 02/01/1904 10:03 PM Page 315

core Java APIs, such as networking and database connectivity. Servlets also pro-
vide an efficient implementation of web applications. Once a servlet is loaded,
it remains in existence as an object instance. Further requests by the server are
simple method calls to that object. Servlet code offers an elegant object-oriented
implementation, supported by its API classes.

When a client connects to a web server and makes an HTTP request, it is
realized as GET or POST requests. The GET is designed for getting informa-
tion (a document, a database query, etc.). The POST is for posting information
(a credit card number, information to be stored in a database, etc.). This is out-
lined in Figure 23.1.

A GET request from a client is forwarded by the web server to the servlet
object. Specifically, the server object will conform to a Java interface, and rede-
fine the behavior for the doGet method. This method operates as the handler for
the GET request. A similar scheme applies to PUT requests, handled by the
doPut method of the servlet object.

Writing a Java servlet then involves subclassing javax.servlet.http.
HttpServlet to override the doGet and/or the doPut method (see Figure 23.1).
Both methods have HttpServletRequest and HttpServletResponse parameters.
As their names suggest, they represent, respectively, the client’s request data and
the servlet’s response.

23.2 groovlets

As has been indicated, developing a servlet involves some sophisticated Java pro-
gramming. With Groovy, things are much simpler. The Groovlet framework
provides an elegant and simplified platform for building web applications. This
simplicity is achieved by the GroovyServlet class. This servlet will run Groovy
scripts as Groovlets.

316 C H A P T E R 23 Server-Side Programming

doGet

GET request

Web server

Client

response

FIGURE 23.1 Servlet handling a GET request.

Barclay chap23.qxd 02/01/1904 10:03 PM Page 316

23.2 groovlets 317

With a Groovlet, there is no need to subclass HttpServlet and redefine
doGet or doPut. In fact, there is no need to even develop a class. The Groovlet
simply delivers the response for the client. This simplicity is demonstrated in
Example 01 where the code prints the HTML content for the browser to render.

println “””
<html>

<head>
<title>Hello world groovlet</title>
<link rel=”stylesheet” type=”text/css” href=”groovy.css”/>

</head>
<body>

<p class=”redarial20”>Hello world groovlet</p>
</body>

</html>
“””

◆

The effect of executing this web application is given in Figure 23.2. The
Groovlet framework maps all URLs of a chosen pattern to a specific servlet
according to the deployment descriptor file web.xml. The <servlet> element
registers the servlet name with its class. The <servlet-mapping> entry indicates
that GroovyServlet should handle all *.groovy requests. An extract of the
web.xml file is:

<?xml version=”1.0”?>

<web-app>

<servlet>
<servlet-name>GroovyServlet</servlet-name>
<servlet-class>groovy.servlet.GroovyServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>GroovyServlet</servlet-name>
<url-pattern>*.groovy</url-pattern>

</servlet-mapping>

...

</web-app>

EXAMPLE 01
Hello world

Barclay chap23.qxd 02/01/1904 10:03 PM Page 317

Deploying a web application to, say, the Apache Tomcat (Brittain and Darwin,
2003) servlet container typically involves compiling application code files and
distributing Java archive files, HTML files, and so on. This is obviously a role
served by build tools such as Ant (Holzner, 2005). Equally, we might consider
using a specialized AntBuilder as described in Appendix K.1.

We noted earlier that the doGet and doPut methods of a Java servlet are
passed request and response parameters. These and other objects available to a
Java servlet are implicitly available to a Groovlet. The variables that can be used
in a Groovlet are listed in Table 23.1.

Example 02 uses some of these variables to produce the output shown in
Figure 23.3. Here, we prepare a table showing details about the server and val-
ues for two initialization values.

318 C H A P T E R 23 Server-Side Programming

Variable Name Bound To

request ServletRequest
response ServletResponse
context ServletContext
application ServletContext
session request.getSession(true)
out response.getWriter()
sout response.getOutputStream()
html new MarkupBuilder(out)

TABLE 23.1 Implicit Groovlet Variables

FIGURE 23.2 Hello world in a browser.

Barclay chap23.qxd 02/01/1904 10:03 PM Page 318

println “””
<html>

<head>
<title>Hello system groovlet</title>
<link rel=”stylesheet” type=”text/css” href=”groovy.css”/>

</head>
<body>

<p class=”redarial20”>Hello system groovlet</p>

<table border=”1” class=”arial10”>
<tr>

<td>Servlet container:</td>
<td>${application.getServerInfo()}</td>

</tr>
<tr>

<td>User init parameter:</td>
<td>${application.getInitParameter(“user”)}</td>

</tr>
<tr>

<td>Project init parameter:</td>
<td>${application.getInitParameter(“project”)}</td>

</tr>
</table>

</body>
</html>
“””

◆

The method getInitParameter is used to get the value for the so-called Init
parameters. These initial values are specified in the web.xml file:

<web-app>

...

<context-param>
<param-name>user</param-name>
<param-value>KenB</param-value>

</context-param>
<context-param>

<param-name>project</param-name>
<param-value>Groovy</param-value>

</context-param>

</web-app>

23.2 groovlets 319

EXAMPLE 02
Implicit variables

Barclay chap23.qxd 02/01/1904 10:03 PM Page 319

Chapter 19 introduced builders for XML content. They, of course, are exactly
what are required to construct the HTML content. We repeat the last illustra-
tion as Example 03. Observe how the predefined variable html is used. This is a
MarkupBuilder object (see Chapter 19) with the generated HTML response sent
through the out variable.

import groovy.xml.MarkupBuilder

html.html() {
head() {

title(“Hello system groovlet”)
link(rel : “stylesheet”, type : “text/css”, href : “groovy.css”)

}
body() {

div(class : “redarial20”) {
p(“Hello system groovlet”)

}

table(border : “1”, class : “arial10”) {
tr() {

td(“Servlet container:”)
td(“${application.getServerInfo()}”)

}
tr() {

td(“User init parameter:”)
td(“${application.getInitParameter(‘user’)}”)

}

320 C H A P T E R 23 Server-Side Programming

EXAMPLE 03
Using builders to
compose HTML
content

FIGURE 23.3 Information access.

Barclay chap23.qxd 02/01/1904 10:03 PM Page 320

tr() {
td(“Project init parameter:”)
td(“${application.getInitParameter(‘project’)}”)

}
}

}
}

◆

The next application demonstrates handling form data. The static page
Introduction.html is a form that requests the user’s first name and surname.
The action attribute points to the Groovlet Hello.groovy. The form page
appears as:

<html>
<head>

<title>Introduction</title>
<link rel=”stylesheet” type=”text/css” href=”groovy.css”/>

</head>
<body>

<form method=”get” action=”Hello.groovy”>

<div class=”redarial20”>Please enter your name
</div>
<table class=”arial10”>

<tr>
<td>Firstname:</td>
<td><input type=”text” name=”firstname”/></td>

</tr>
<tr>

<td>Surname:</td>
<td><input type=”text” name=”surname”/></td>

</tr>
<tr>

<td><input type=”submit”/></td>
</tr>

</table>

</form>
</body>

</html>

23.2 groovlets 321

Barclay chap23.qxd 02/01/1904 10:03 PM Page 321

import groovy.xml.MarkupBuilder

html.html() {
head() {

title(“Hello groovlet”)
link(rel : “stylesheet”, type : “text/css”, href : “groovy.css”)

}
body() {

div(class : “redarial20”) {
p(“Hello groovlet”)

}

div(class : “arial10”) {
p(“Hello, ${request.getParameter(‘firstname’)} ${request.getParameter(‘surname’)}”)

}

}
}

◆

322 C H A P T E R 23 Server-Side Programming

EXAMPLE 04
Request parameters

EXAMPLE 05
Database access

In the final example from this section, we show how a Groovlet can access
a database (Figure 23.4). We use a markup builder to assemble a table to display
the details of bank accounts. For each account, we tabulate its number and its
balance. The code is given in Example 05.

Example 04 lists the Groovlet.

import groovy.xml.MarkupBuilder
import groovy.sql.*

def DB = “jdbc:derby:C:/Books/groovy/src/Chapter23.Groovlets/Example05/accountDB”
def USER = “”
def PASSWORD = “”
def DRIVER = “org.apache.derby.jdbc.EmbeddedDriver”

// Connect to database
def sql = Sql.newInstance(DB, USER, PASSWORD, DRIVER)

Barclay chap23.qxd 02/01/1904 10:03 PM Page 322

html.html() {
head() {

title(“Account groovlet”)
link(rel : “stylesheet”, type : “text/css”, href : “groovy.css”)

}
body() {

div(class : “redarial20”) {
p(“Account groovlet”)

}

table(border : “1”, class : “arial10”) {
sql.eachRow(“select * from account”) { acc ->

html.tr() {
td(“${acc.number}”)
td(“${acc.balance}”)

}
}

}
}

}

◆

23.2 groovlets 323

FIGURE 23.4 Database access.

Barclay chap23.qxd 02/01/1904 10:03 PM Page 323

23.3 gsp pages

JSP pages are used primarily for the presentation of content. This is, of course,
a mixture of static and dynamic content. A stated purpose of JSP is to enable
the separation of dynamic and static content. However, because of the func-
tionality provided by JSP, it is more a case that JSP enables the separation rather
than enforces it.

Superficially, GroovyServer Pages (GSP) look very similar to JSPs. The pri-
mary distinction is that the GSP framework is actually a template engine (see
Chapter 21). A consequence is that GSPs have less functionality than their JSP
counterparts and, in some sense, are better suited to the task of simply merging
static and dynamic content.

GSPs are well suited to the task of presenting web content. Since the GSP
framework is that of a template technology, its role is firmly focused on the view
aspect of an MVC architecture. The examples later in this section will blend
Groovlets and GSPs, with the former concerned with business logic and the lat-
ter responsible for viewing information content.

A GSP page is a regular web page with interwoven dynamic content. GSPs
allow for the inclusion of Groovlet code into an otherwise static HTML file.
Each block of code (usually called a scriptlet) is embedded in <% and %>. As with
Groovlets, we can reference servlet objects such as session. The listing given in
Example 06 is a simple GSP that displays the content Hello three times.
Observe how the scriptlet manages the loop.

<html>
<head>

<title>Hello GSP</title>
<link rel=”stylesheet” type=”text/css” href=”groovy.css”/>

</head>
<body>

<p class=”redarial20”>Hello GSP</p>

<p class=”arial10”>
<% 3.times() { %>

Hello
<% } %>

</p>
</body>

</html>

◆

When loaded into the browser, we have Figure 23.5.

324 C H A P T E R 23 Server-Side Programming

EXAMPLE 06
A simple GSP

Barclay chap23.qxd 02/01/1904 10:03 PM Page 324

Next, we revisit Example 4. An HTML form accepts the user’s first name
and surname, then output the values on a separate page. Here, we do this by set-
ting the action element of the form to refer to the Groovlet:

def dispatcher = request.getRequestDispatcher(“Hello.gsp”)
dispatcher.forward(request, response)

The Groovlet simply forwards the request to the GSP that will perform the
presentation. The request parameters are carried from the Groovlet to the GSP,
where they can be obtained as shown in Example 07.

<html>
<head>

<title>Hello GSP</title>
<link rel=”stylesheet” type=”text/css” href=”groovy.css”/>

</head>
<body>

<p class=”redarial20”>Hello GSP</p>

<p class=”arial10”>
Hello <% print “${request.getParameter(‘firstname’)}”;

print “${request.getParameter(‘surname’)}” %>

23.3 gsp pages 325

FIGURE 23.5 A simple GSP.

EXAMPLE 07
Request parameters
in a GSP

Barclay chap23.qxd 02/01/1904 10:03 PM Page 325

</p>
</body>

</html>

◆

The result is given in Figure 23.6.

326 C H A P T E R 23 Server-Side Programming

FIGURE 23.6 Request parameters.

The final example illustrates how a Groovlet might be tasked with any
application processing and GSPs would simply have responsibility for presenta-
tion. Once again, we use our bank account database. The Groovlet is responsi-
ble for the code to open and access the account table. In the code, the accounts
data set is bound to the request object using the method setAttribute. This
effectively is a binding between a name and the accounts object.

import groovy.xml.MarkupBuilder
import groovy.sql.*

// Forwards to specified page
def forward(page, req, res) {

def dispatcher = req.getRequestDispatcher(page)
dispatcher.forward(req, res)

}

Barclay chap23.qxd 02/01/1904 10:03 PM Page 326

def DB = “jdbc:derby:C:/Books/groovy/src/Chapter23.Groovlets/Example08/accountDB”
def USER = “”
def PASSWORD = “”
def DRIVER = “org.apache.derby.jdbc.EmbeddedDriver”

// Connect to database
def sql = Sql.newInstance(DB, USER, PASSWORD, DRIVER)
def accounts = sql.dataSet(“account”)

request.setAttribute(“accounts”, accounts)

forward(“AccountDB.gsp”, request, response)

23.3 gsp pages 327

EXAMPLE 08
GSP to display a
database table

The Groovlet then forwards to the GSP, which accesses the same accounts object
and employs an iterator and closure to present each account number and balance
in a table. Note the use of an expression enclosed by <%= and %>. The expression
enclosed by these tags is evaluated and the result is included in the page.

<html>
<head>

<title>Account GSP</title>
<link rel=”stylesheet” type=”text/css” href=”groovy.css”/>

</head>
<body>

<p class=”redarial20”>Account GSP</p>

<table border=”1” class=”arial10”>
<% def accounts = request.getAttribute(‘accounts’)

accounts.each { acc -> %>
<tr>

<td> <%= acc.number %> </td>
<td> <%= acc.balance %> </td>

</tr>
<% } %>

</table>
</body>

</html>

◆

Figure 23.7 is the screenshot when the GSP is displayed.

Barclay chap23.qxd 02/01/1904 10:03 PM Page 327

23.4 exercises

1. Repeat Example 02 using the MarkupBuilder class shown in Example 03.

2. Repeat Example 07 using only Groovlets, as shown in Example 01.

3. Extend Example 04 and validate that the inputs for the user’s first and
last name are non-null. If so, return to the input form and additionally
report a suitable error message.

4. Prepare a simple GSP that welcomes the user with the message “Good
Morning,” “Good Afternoon,” or “Good Evening,” as appropriate.

328 C H A P T E R 23 Server-Side Programming

FIGURE 23.7 Database view.

Barclay chap23.qxd 02/01/1904 10:03 PM Page 328

329

C H A P T E R 24
case study: a l ibrary
application ⁽web⁾

This is our final consideration of the library case study. Here, we replace the
graphical user interface (GUI) developed in Chapter 22 with a web browser
interface, transforming the system into a web application. From the preceding
chapter, we use a combination of Groovlets and GSPs.

As described in previous versions of this case study, we sought to separate
our logic using an MVC architecture. Adopting this framework in Chapter 13,
we were able to separate the business logic of our domain model classes from the
text-based user interface classes. Maintaining this architecture into Chapter 22
meant that it was a relatively simple task to replace the text-based user interface
classes with Swing classes, giving the application a GUI.

Once again, our investment in establishing an MVC architecture demon-
strates the ease with which we can substitute a new user interface. GSPs are well
suited to the task of presenting web content. Since the GSP framework is a tem-
plate technology, its role is firmly focused on the view aspect of an MVC archi-
tecture. In turn, Groovlets provide the controller logic we require in the
application, such as adding a new publication or lending a publication to a bor-
rower. Finally, we continue with an unchanged domain model, using data access
objects to interact with the database.

24.1 iteration 1 : web
implementation

The graphical interface for this application will mirror that developed in
Chapter 20. Visually, it appears as shown in Figure 24.1. It comprises a vertical
strip of buttons with an explanatory label to the left of each button.

Barclay chap24.qxd 02/01/1904 10:03 PM Page 329

As was demonstrated in Example 08 of Chapter 23, a Groovlet is used to
start the application. Once again, we use the Spring framework to configure the
application beans. We then bind the Library object referenced by the lib vari-
able to the name ‘lib’ so that we can refer to that object elsewhere in the appli-
cation. The code for this is in library.groovy:

330 C H A P T E R 24 Case Study: A Library Application (Web)

FIGURE 24.1 Visual interface.

import java.io.*

import org.springframework.context.support.*

def applicationContext = new FileSystemXmlApplicationContext(context.getRealPath(‘/’) + ‘config.xml’)
def lib = applicationContext.getBean(‘lib’)

application.setAttribute(‘lib’, lib)

Utility.forward(‘mainmenu.gsp’, request, response)

The forward method introduced in Example 08 of Chapter 23 has been made
a static method of the Utility class since we use it throughout the application.

Barclay chap24.qxd 02/01/1904 10:03 PM Page 330

24.1 iteration 1 : web implementation 331

The GSP mainmenu.gsp renders the menu we see in Figure 24.1. It is assem-
bled using an HTML table with two columns. The left column is an explana-
tory note for the use case. The right column is a button to select that service.
A segment of the code for this is:

<html>
<head>

<title>Library: Main menu</title>
<link rel=”stylesheet” type=”text/css” href=”groovy.css”/>

</head>

<body>
<p class=”redarial20”>Library: Main menu</p>

<table>

<tr>
<td class=”arial10” valign=”top”>Add new publication</td>
<td>

<form action=”addpublication.gsp”>
<input type=”submit” value=”Add publication”/>

</form>
</td>

</tr>

<tr>
<td class=”arial10” valign=”top”>Display loan stock</td>
<td>

<form action=”displaystock.gsp”>
<input type=”submit” value=”Display stock”/>

</form>
</td>

</tr>

// ...

</table>
</body>

</html>

To display the complete loan stock belonging to the library, the action for the
use-case button invokes the GSP displaystock.gsp. It produces an output sim-
ilar to that in Figure 24.2. The GSP references the Library object set in the
startup Groovlet, and then iterates over each Publication in the loanStock
using the each iterator. The associated closure assembles the table rows, selec-
tively printing a Book or Journal.

Barclay chap24.qxd 02/01/1904 10:03 PM Page 331

Many of the other use-cases for this project are provided by a GSP and its
matching Groovlet. For example, when a publication is to be returned, the pub-
lication’s catalog number is required, and we get this from the GSP:

<html>
<head>

<title>Library: Return one publication</title>
<link rel=”stylesheet” type=”text/css” href=”groovy.css”/>

</head>

<body>
<p class=”redarial20”>Library: Return one publication</p>

<form action=”returnpublication.groovy”>
<table>

<tr>
<td class=”arial10”>Catalog number: </td>

332 C H A P T E R 24 Case Study: A Library Application (Web)

FIGURE 24.2 Loan stock display.

Barclay chap24.qxd 02/01/1904 10:03 PM Page 332

<td><input type=”text” name=”catalognumber”/></td>
</tr>

</table>
<input type=”submit” value=”Submit”/>

</form>
</body>

</html>

The catalog number entered by the user is then transferred as a request param-
eter to the Groovlet that implements the service:

def lib = application.getAttribute(‘lib’)

def catalogNumber request.getParameter(‘catalognumber’)
lib.returnPublication(catalogNumber)

Utility.forward(‘mainmenu.gsp’, request, response)

24.2 exercise

1. Consider the main menu provided by mainmenu.gsp. Each application use
case is presented in a table row, with the left column having the use-case
descriptor and the right column being a button to activate the service.
Consider revising this implementation and using a MarkupBuilder to
assemble the HTML.

24.2 exercise 333

Barclay chap24.qxd 02/01/1904 10:03 PM Page 333

This page intentionally left blank

335

C H A P T E R 25
epilogue

This chapter signals the end of our journey into programming with Groovy. We
believe that it also marks the period in which Groovy will make major contri-
butions to the Java platform. We expect to see growth in the usage of Groovy,
which mirrors that of Java when it was first announced. Groovy’s role will be as
a flexible, agile scripting language that complements Java.

It is recognized that Groovy represents an immature technology. However,
this is only partly true. It is accepted that the current reference implementation
(JSR 06) has a number of imperfections to correct. Notwithstanding, it is a
robust implementation that will be at the core of official releases. Full support
for Groovy is under development from IDE builders (see http://groovy.code-
haus.org/Eclipse+Plugin,http://groovy.codehaus.org/IntelliJ+IDEA+
Plugin).

The relative immaturity of Groovy is offset by reminding ourselves that
Groovy derives most of its capabilities from the extensive collection of Java
APIs. In much the same way as Java represents a relatively small and simple pro-
gramming language that is then enriched with APIs, so is Groovy. Groovy goes
one step further by offering an agile environment that can fully exploit this
reservoir of code. Groovy and Java are partners, with Java as the systems pro-
gramming language for developing these frameworks and infrastructures, and
Groovy for gluing them into applications.

As the Groovy momentum grows, we will undoubtedly see greater integra-
tion with existing products as well as new products developed for Groovy. We
used parts of the Spring framework throughout this text. We expect Groovy to
find a place in several areas of Spring, such as unit testing, bean definition, and
perhaps even a view in SpringMVC, exploiting Groovy’s support for templates.
A separate development, entitled Grails (see http://grails.codehaus.org/),

Barclay chap25.qxd 02/01/1904 10:04 PM Page 335

aims to repeat the success of Ruby on Rails (see http://www.rubyonrails.org/)
on the Ruby platform. Rails is an open-source Ruby framework for developing
database-backed web applications.

Web services (Erl, 2004; Topley, 2003) is a related area in which Groovy
might also contribute. In addition to simplifying access to services, Groovy
could make a contribution to the related Business Process Execution Language
for web services, BPEL (see http://www-128.ibm.com/developerworks/webser-
vices/library/ws-bpelwp/). BPEL makes extensive use of XML in which
Groovy has strong support. Further, as observed elsewhere (see http://www.mar-
tinfowler.com/articles/languageWorkbench.html), Groovy’s builders might be
the basis of a domain-specific language (DSL) for BPEL.

Groovy also offers new educational opportunities. Computing and software
engineering students should find Groovy attractive since it makes it easy to get
started writing Javalike software without having to address complex issues too
soon. Although such students will almost inevitably migrate to Java, they should
also find Groovy’s “gluing” abilities useful in more ambitious applications later
in their careers.

Groovy can also assist specialist academic studies that involve software
development. Groovy’s light touch allows the specialty to shine through and not
be obscured by detailed Java programming.

Let’s get Groovy.

336 C H A P T E R 25 Epilogue

Barclay chap25.qxd 02/01/1904 10:04 PM Page 336

337

A P P E N D I X A
software
distribution

The materials presented in this textbook are supplied under various open-source
licenses. The binary and source code are freely available and, as a consequence,
evolve rapidly by the input of the programming community. The materials are
of extremely high quality and are free to users.

The examples used in this book were developed on the MS Windows plat-
form. The descriptions given here, therefore, pertain to that environment. Most
of the discussion is, however, generally applicable and can be readily adapted for
other platforms.

The following sections are necessarily brief and may be subject to change.
However, readers should consult the website for the book and the website for
the tool for more details and updates.

A.1 the java development kit

The Java Development Kit (JDK) is available from the website at
http://java.sun.com/j2se/1.5.0/download.jsp. It is downloaded as a self-
extracting compressed file, and available for a variety of platforms. From the
same website, a ZIP file containing the documentation can also be obtained.
Under MS Windows, double-click the executable (say, jdk-1_5_04-windows-
i586-p.exe) to start the unpacking procedure. The default is to locate the JDK
in the folder C:\Program Files\. A space in a folder name is often the source of
many subtle bugs, and it is recommended that one nominate the directory (say,
C:\jdk-1_5_04) as the destination.

Appendix.qxd 6/11/06 7:59 PM Page 337

Unpack the ZIP documentation file into the same location so that the JDK
is all in one directory.

A.2 the groovy development kit

The Groovy Development Kit (GDK) is available from the website (see
http://groovy.codehaus.org/). It is downloaded as a ZIP file and is a complete
package, including the tools and the documentation. Unpack this into a suit-
able location; once again, observe the caution of folders with embedded spaces
in their names. The distribution includes a number of subfolders such as bin
(for executables, batch files, and so on) and the lib folder containing the
Groovy JAR files.

A.3 ant

Apache Ant is a Java-based build tool. It is available at http://ant.apache.
org/bindownload.cgi. It is downloaded as a ZIP file and is a complete package,
including the tools and the documentation. Unpack this into a suitable loca-
tion; once again, observe the caution of folders with embedded spaces in their
names. The distribution includes a number of subfolders such as bin (for exe-
cutables, batch files, and so on) and the lib folder containing the JAR files.

The docs folder of the distribution includes an index.html welcome page.
From here, follow the manual link to extensive documentation for installing,
using, and running Ant as well as documentation on the various Ant tasks.

A.4 the derby ⁄cloudscape database

The Cloudscape database was originally developed at IBM. It has been donated
to the open source community under the new name Derby. It is available from
the website at http://db.apache.org/derby/. Unpack this into a suitable location.
The distribution includes the lib folder containing its supporting JAR files.

The doc/pdf folder includes a number of documentation files. The “getting
started” document is invaluable for those new to DBMS tools. The developer’s
guide discusses installing and deploying Cloudscape, while the reference and
tools documents address such matters as SQL and Cloudscape tools such as ij,
the interactive JDBC scripting tool.

338 A P PE N D I X A Software Distribution

Appendix.qxd 6/11/06 7:59 PM Page 338

A.8 the textbook sources 339

A.5 the spring framework

The Spring framework is available form the website (see http://www.
springframework.org/). It is supplied as a complete ZIP file, including sup-
porting documentation. Unpack this into a suitable location. The distribution
includes the dist folder, which contains its supporting JAR files.

The docs/reference folder has an enormously informative book on Spring
delivered as a PDF file. The docs/api folder is a reference for the classes pro-
vided by Spring.

A.6 the tomcat server

The Tomcat server is available from the website at http://tomcat.apache.org/.
It is distributed in a number of common formats. Download a binary edition
and unpack this into a suitable location. The distribution includes the bin folder
for executables, batch files, and so on. The supplied documentation (in webs\
tomcat-docs) refers to the batch files bin\startup.bat and bin\shutdown.bat
for starting and stopping Tomcat. The folder webapps is the folder in which we
deploy web applications. A subfolder off the latter, tomcat-docs, includes a
Tomcat user guide covering introduction, setup, and deployment.

A.7 eclipse ide

The Eclipse IDE is an open-source integrated development environment (see
http://www.eclipse.org/). Its unique plug-in–based architecture makes it easy
to create, integrate, and utilize software tools. It has rapidly developed and now
has an extensive collection of tools. The class diagrams used in this book were
developed using the Omondo UML tool (see http://www.eclipse-
plugins.info/eclipse/plugins.jsp; follow the categories and UML links).
A Groovy plug-in is currently a work in progress (see http://groovy.code
haus.org/Eclipse+Plugin).

A.8 the textbook sources

The examples and exercises are available at the book website. The examples are
located in the src folder and the exercises in the solutions folder. In both, the
code files are in subdirectories, with names reflecting the chapters and appen-
dices to which they belong. Hence, the subdirectory AppendixI.Classes in the
src folder contains the *.groovy example files for Appendix I. The subdirectory

Appendix.qxd 6/11/06 7:59 PM Page 339

Chapter12.Classes in the solutions folder contains the *.groovy exercises for
Chapter 12. The structure of the src folder, for example, is illustrated as:

src
AppendixB.Groovy
AppendixD.Strings
...
Chapter07.Methods

example01.groovy
example02.groovy
...

Chapter08.Control.Flow
...
guide
lib
utils
setgroovy.bat

In all cases, files that represent a class declaration follow the usual Java naming
convention. Hence, the file containing the Account class is found in the
Account.groovy file. Those files that represent scripts are given names such as
example01.groovy or exercise02.groovy.

Within the src folder, the utils subdirectory includes the source code for
the classes Console (Chapter 5 and Appendix F), Build (Appendix K), and
Functor (Appendix J). An Ant build file compiles this code, and then creates
and deploys the file utils.jar into the src\lib subdirectory. The guide subdi-
rectory has all the source files for the GUIDE tool. Again, an Ant build file is
provided to compile and archive the code.

The src folder also includes the file setgroovy.bat. This MS Windows
batch file sets the environment for using Groovy on this platform. It will, of
course, need to be edited to reflect the local settings of the reader. Used as a tem-
plate, a similar configuration file can be prepared for other platforms.

As new features are regularly added to the website, the reader is advised to
consult it for any up-to-date information.

340 A P PE N D I X A Software Distribution

Appendix.qxd 6/11/06 7:59 PM Page 340

groovy

The syntax of Groovy is based on the Java programming language syntax. This
makes for a relatively short learning curve for Java developers. Groovy makes
writing scripts and applications for the Java platform fast and easy. It includes
language features found in Python, Ruby, and Smalltalk, but uses syntax more
natural to Java developers. Because Groovy is based on Java, applications writ-
ten in Groovy can use the full complement of Java APIs, and Groovy works
seamlessly with other components and applications written in the Java pro-
gramming language.

In this appendix, we seek to demonstrate how Groovy implements a variety
of its features using Java. We hope to show how the authors of Groovy use sim-
ple and elegant designs that are pure Java. Hence, as pure Java, they are also able
to fully exploit the Java APIs.

B.1 s imple and elegant

The authors of Groovy sought to develop a language that was sympathetic with
Java. The aim was to introduce a language that would offer no surprises to the
Java developer. So, for example, Groovy has classes that can be presented as nor-
mal Java code. Syntactically, a Groovy class can appear as if it were a Java class.
It is compiled into standard Java byte code that conforms to the Java Virtual
Machine Specification (JVM). To the JVM, there is no difference between a
class file compiled from the Groovy language and one compiled from the Java
programming language.

341

A P P E N D I X B

Appendix.qxd 6/11/06 7:59 PM Page 341

Tradition has it that the first program should be the “hello, world” program
(Kernighan and Ritchie, 1988). The program simply prints the text hello,
world on to the standard output. In Groovy, this would appear as:

println ‘hello, world’

A Java programmer might expect to see a class with a method called main. The
main method would involve some statement to produce the required output.
Somewhat surprisingly, at the bytecode level, this Groovy code is pure Java! If
we were to compile the code using the Groovy compiler into a .class file, then
disassemble the bytecode represented by that .class file, we would discover the
Java code that would be expected.

If this Groovy code is placed in the Groovy source file Hello.groovy, then
when we explore the bytecode produced by the Groovy compiler, we have the
following (much simplified and incomplete) equivalent:

public class Hello ... {

public static void main(String[] args) {
Hello h = new Hello();
h.run(args);

}

public void run(String[] args) {
this.println(‘hello, world’);

}

}

This time, we do have a class that is named Hello. The class includes the
expected startup method, main. In main, an object of the class Hello is created
and invokes its run method. The run method is defined by this class and invokes
the println method on itself, passing the string we wish displayed. Of course,
println is not defined in the class Hello. It is inherited from the class Object
that Hello indirectly extends.

This explanation leads us to infer that the Java class Object defines the
method println, but this is not the case. Further, there is no Groovy variant of
the class that extends Object and includes the println method. In fact, the
Groovy interpreter intercepts this method call and implements it itself, giving
the impression that println is indeed a method of class Object.

Groovy describes these apparently augmented classes as part of the Groovy
Development Kit (GDK). The classes are documented (see http://groovy.
codehaus.org/groovy-jdk.html) as if the Java classes in the JDK (Java

342 A P PE N D I X B Groovy

Appendix.qxd 6/11/06 7:59 PM Page 342

Development Kit) do indeed include additional methods. One needs, therefore,
to be alert to the role of the Groovy interpreter in these matters. Significantly,
the JDK is not changed.

B.2 methods

All methods ultimately belong to a class. This is also true for those defined (at
the top level) in a Groovy script (see Chapter 7 and Appendix G). As has been
demonstrated, the script code is enclosed in a class. A top-level method is then
a method of that class. Hence, the Groovy script (from the file Demo.groovy):

def times(x, y) {
return x * y

}

def p = times(3, 4)
println p

is incorporated into a class in a manner equivalent to:

public class Demo ... {

public static void main(String[] args) {
Demo h = new Demo();
h.run(args);

}

public void run(String[] args) {
Object p = this.times(new Integer(3), new Integer(4));
this.println(p);

}

public Object times(Object x, Object y) {
return x.multiply(y);

}
}

First, note the signature of method times. Since most of our Groovy code
employs dynamic typing, then the parameter types and the return type are
Object. The method itself is implemented by invoking the multiply method on
the object referenced by x and passing y as the method parameter. Of course,
multiply is the method implementation for the * operator (see Chapter 2,
Appendix C, and Appendix G).

B.2 methods 343

Appendix.qxd 6/11/06 7:59 PM Page 343

In the run method, the variable p is assigned the value returned from the
call of method times. The actual parameters are Integers initialized with the
integer literals. Note how p is a local variable of method run.

B.3 lists

Groovy provides native syntax support for Lists and Maps (see Chapter 4 and
Appendix E). For example, a List of three integer values is:

def numbers = [11, 12, 13]

As has been shown, Groovy has a [] shorthand for constructing Lists directly.
We see that this is implemented with a createList method. It is given all the
Objects we pass to it, and returns a new ArrayList (see JDK) containing them.

344 A P PE N D I X B Groovy

public class Demo ... {

public static void main(String[] args) {
Demo d = new Demo();
d.run(args);

}

public Object run(String[] args) {
Object numbers = createList(new Object[] {new Integer(11), new Integer(12), new Integer(13)});
return numbers;

}
}

B.4 classes

A Groovy class (see Chapter 12 and Appendix I) significantly simplifies its Java
equivalent. The use of the def keyword seeks to unify the notion of an attribute
(instance field) and a method. In Groovy, a property is equivalent to the
instance field and its getter/setter methods.

class Account {

// -----properties ---------------------

def number
def balance

}

Appendix.qxd 6/11/06 7:59 PM Page 344

The Java version for this class might appear as:

public class Account ... {
public Account() { ... }

public Object getNumber() { return number; }
public void setNumber(number) { this.number = number; }

public Object getBalance () { return balance; }
public void setBalance(Object balance) { this. balance = balance; }

// ------properties -----------------

Object number;
Object balance;

}

The inclusion of the default constructor and the setter methods for each prop-
erty also supports Groovy’s use of named parameters when creating an object.
For example:

def acc = new Account(number : ‘ABC123’, balance : 1200)

is simply a contraction for:

Account acc = new Account();
acc.setNumber(‘ABC123’);
acc.setBalance(new Integer(1200));

B.5 polymorphism

Although Groovy includes support for interfaces (see Chapter 14), it does not
really require them because of its dynamic typing. An interface is used to spec-
ify a protocol that other classes implement. With an object of a class that imple-
ments the interface, we can then call whatever methods exist on that interface.

In Groovy, polymorphism is simply a matter of matching method names.
Two objects belonging to two unrelated classes can be sent the same message,
provided that the method is defined by each class. The following example illus-
trates:

B.5 polymorphism 345

Appendix.qxd 6/11/06 7:59 PM Page 345

class Account {

def display() {
println “Account: ${number} ${balance}”

}

def number
def balance

}

class Student {

def display() {
println “Student: ${registrationNumber} ${name}”

}

def registrationNumber
def name

}

def group = [new Account(number : ‘ABC123’, balance : 1200),
new Student(registrationNumber : ‘2006.1234’, name : ‘Ken Barclay’)

]

group.each { item -> item.display() }

346 A P PE N D I X B Groovy

The two classes Account and Student do not share a common superclass or
implement the same interface. When we iterate over the collection, we can call
the display method on every object referenced in the group.

B.6 closures

A Groovy closure (see Chapter 9 and Appendix H) is implemented using an
inner class (Eckel, 2003). Consider the following script in which the product of
two values is defined by a parameterized closure named times. The closure gets
called, and the result assigned to the variable z.

def times = { x, y ->
return x * y

}

def z = times(3, 4)

Appendix.qxd 6/11/06 7:59 PM Page 346

The run method includes the definition of a local inner class, here arbitrarily
named as TimesClosure, that extends the Groovy class Closure. Local classes can
use the properties and methods of the enclosing class. Further, code in a local
inner class can use local variables and parameters in the method that defines the
class. This is how the scoping rules that apply to closures are derived. An
instance of this class is then created and the closure invoked, passing the two
integer literals as instances of the class Integer.

B.7 exceptions 347

public class Demo ... {

public static void main(String[] args) {
Demo d = new Demo();
d.run(args);

}

public Object run(String[] args) {
class TimesClosure extends Closure { ... }
TimesClosure clos = new TimesClosure(this);
Object z = invokeClosure(clos, new Object[] {new Integer(3), new Integer(4)});
return z;

}
}

The inner class is defined in a manner somewhat like the following listing.
When a closure is called, then its call method is invoked. Here, the body for this
method is the body for the closure definition, invoking method multiply.

class TimesClosure ... {

public TimesClosure(Object obj) {
super(obj);
owner = Demo.this;

}

public Object call(Object obj1, Object obj2) {
return invokeMethod(this, “multiply”, new Object[] {obj1, obj2})

}
}

B.7 exceptions

The Java programming language uses exceptions to provide error-handling
capabilities for its programs. An exception is an event that occurs during the
execution of a program that disrupts the normal flow of execution. The Java

Appendix.qxd 6/11/06 7:59 PM Page 347

runtime system requires that a method either catch or specify all checked excep-
tions that can be thrown by that method. A method can catch an exception by
providing an exception handler for that type of exception or specify that it can
throw exceptions by using the throws clause in the method declaration.

Classes that extend the JDK Exception class are known as checked exceptions.
The Java compiler checks to see whether two things occur in a program using
these classes:

● Every method that throws a checked exception must advertise it in the
throws clause in its method definition.

● Every method that calls a method that advertises a checked exception
must either handle that exception (with try and catch) or must, in
turn, advertise that exception in its own throws clause.

There are other errors that can occur, such as when memory is exhausted, that
are outside programmer control. They prevent the Java virtual machine from
fulfilling its specification. Since it is not possible to plan for such errors, it would
be necessary to catch them everywhere. This defeats the principle of maintain-
ing uncluttered code. Therefore, these errors are unchecked exceptions, meaning
exceptions that you don’t have to include in a throws clause.

Since Groovy does not distinguish between checked and unchecked excep-
tions, then the throws clause in method heads is not supported. As a conse-
quence, the Groovy compiler does not enforce the rules described previously. By
default, Groovy assumes that all exceptions are unchecked, unless the program-
mer chooses to indicate otherwise.

348 A P PE N D I X B Groovy

Appendix.qxd 6/11/06 7:59 PM Page 348

more on
numbers and
expressions

The Groovy interpreter plays an important role in the evaluation of an expression.
For example, in Chapter 2, we discussed operators in the context of the evalua-
tion expressions such as 123 + 456. The assumption made was that it was possible
to send the message plus to an Integer object. This is not strictly true because
there is no class in the Groovy environment with that method. The Groovy inter-
preter recognizes that two integers are being added and arranges matters so that it
appears that the method call 123.plus(456) is executed. The attraction of this
approach is that the core Java classes such as Integer, on which Groovy is built,
are unchanged, yet they give us a more Groovy-like functionality.

C.1 classes

Recall from our earlier discussions that everything in Groovy is an object. It is
not surprising, therefore, that an integer value is an instance of the class Integer
and a floating-point value is an instance of the class BigDecimal. In effect,
a Groovy definition such as:

def age = 25

is equivalent to:

Integer age = new Integer(25)

in which the variable age refers to an instance of an Integer object.

349

A P P E N D I X C

Appendix.qxd 6/11/06 7:59 PM Page 349

Chapter 2 also introduced the relational and equality operators. These pro-
duce a boolean value of false or true. In, for example:

def age1 = 25
def age2 = 35
def isYounger = age1 < age2

the variable isYounger refers to an instance of the class Boolean with the value
true.

C.2 expressions

We have stressed that the arithmetic expression 123 + 456 is actually imple-
mented by Groovy as the plus method call as if it were 123.plus(456). Either is
then a valid expression in Groovy. Following what we stated in the preceding
section, it means we may also express this as new Integer(123).plus(new
Integer(456)). Although legal in Groovy, this is probably not a wise decision,
but it does illustrate the equivalence of these constructs.

It is perhaps worth noting that we can chain together multiple assignments.
The following is perfectly valid Groovy:

def p = 10
def q = 20
p = q = 30 // p is 30, q is 30

C.3 operator associativity

An expression involving operators of equal precedence is resolved by the asso-
ciativity of the operators. This defines the direction in which operators possess-
ing the same precedences are executed. For example, the expression:

2 + 3 * 4 + 5

is evaluated in the following manner. Multiplication has the highest precedence
of the three operators and is evaluated first. The expression now reduces to 2 +
12 + 5 with the two addition operators having equal precedence. The associa-
tivity is left to right, and so the 2 and 12 are first added to give 14 before finally
the 14 and 5 are summed to produce 19 as the final result.

350 A P PE N D I X C More on Numbers and Expressions

Appendix.qxd 6/11/06 7:59 PM Page 350

If, in the expression 2 + 3 * 4 + 5, it is required to perform both the addi-
tions before executing the multiplication, then this is indicated by employing
parentheses (and) around the subexpressions. The expression would then be
presented as (2 + 3) * (4 + 5), and it evaluates to 5 * 9 or 45.

The full table of operator precedence and associativity is given in Table C.1.

C.4 variable definitions 351

Category Operators Example Associativity

Array subscript [] a[2] Left to right
Member access . a.b()
Postfix operators expr++ expr-- x++ Right to left
Unary operators ++expr --expr + - ≈ ! -x Right to left
Multiplicative * / % x * y Left to right
Additive + - x + y Left to right
Shift << >> >>> x << y Left to right
Relational < <= > >= instanceof x <= y Left to right
Equality == != <=> x != y Left to right
Bitwise and & x & y Left to right
Bitwise exclusive or ^ x ^ y Left to right
Bitwise inclusive or | x | y Left to right
Logical and && x && y Left to right
Logical or || x || y Left to right
Conditional :? a < b ? x : y Left to right
Assignment = += -= *= /= %= &= x += y Right to left

^= ⎪= <<= >>= >>>=

TABLE C.1 Operator Precedence and Associativity

C.4 variable definitions

A variable definition introduces a variable and optionally initializes it with a
given value. It also determines the scope or extent over which the variable can be
referenced. This is defined as the block of code in which the definition occurs.
The following are valid definitions:

def a = 10
def b = 20, c = 30

Observe how the second example defines and initializes two variables.

Appendix.qxd 6/11/06 7:59 PM Page 351

It is also possible to define a variable without initializing it. In that case,
since the variable will be a reference to an object, it is implicitly initialized to
null. The following all have the same effect:

def d = null // explicitly null
def e, f // both implicitly null

It is illegal in Groovy to define a variable twice in the same code block.
Thus, the following would elicit an error reporting that the variable p has
already been defined:

def p = 20
def p = 30 // error: p already defined

Equally, if a variable has not been defined and then is used in an expression,
an error reports that no variable is defined:

def pp = qq // error: qq not defined

Section 2.4 specified the rule for creating valid identifiers in Groovy. Identifiers
must not conflict with the Groovy keywords that are reserved for use by the lan-
guage. The list of Groovy keywords is given in Table C.2.

352 A P PE N D I X C More on Numbers and Expressions

abstract any as assert boolean
break byte case catch char
class continue def default do
double else enum extends false
final finally float for if
implements import in instanceof int
interface long native new null
package private protected public return
short static strictfp super switch
synchronized this threadsafe throw throws
transient true try void volatile
while with

TABLE C.2 Groovy Keywords

Appendix.qxd 6/11/06 7:59 PM Page 352

C.5 compound assignment
operators

Groovy supports compound assignment operators for abbreviating some assign-
ment expressions. Any statement of the form:

variable = variable operator expression

can be written as:

variable operator = expression

provided that operator is one of the binary operators shown in Table C.1. Some
examples are:

balance += 15 // balance = balance + 15
balance –= 15 // balance = balance – 15
interest *= 1.5 // interest = interest * 1.5
interest /= 2.5 // interest = interest / 2.5
value %= 4 // value = value % 4

In these examples, since the variable is being updated, it should have been pre-
viously defined and initialized.

C.6 logical operators

The logical operators are given in Table C.3. The logical and operator (repre-
sented as &&) and the logical or operator (⎪⎪) are binary operators. They are
applied to a pair of Boolean values and produce a Boolean result. The logical
negation operator (!) is a unary operator, applied to a single Boolean value that
delivers a Boolean result.

C.6 logical operators 353

Operator Description Associativity

&& Logical and Left to right
⎪⎪ Logical or Left to right
! (Unary) logical negation Right to left

TABLE C.3 Logical Operators

Appendix.qxd 6/11/06 7:59 PM Page 353

There is one subtlety about the logical and operator and the logical or oper-
ator that is worthy of note. In the evaluation of the subexpressions that are the
operands of the && and ⎪⎪ operators, the evaluation stops as soon as the outcome
is determinable. Suppose expr1 and expr2 are the subexpression operands.
Then, in:

expr1 && expr2

expr2 will not be evaluated if expr1 is determined to be false. Consider the fol-
lowing:

def a = 10
def b = 20
def c = 30
def d = (b < a) && (c = 40)

Since the subexpression b < a is false, then variable c is not assigned the new
value 40.

Equally, if expr1 is true, then in:

expr1 ⎪⎪ expr2

expr2 will not be evaluated since the value of the logical expression is already
known to be true.

C.7 conditional operator

The conditional operator (also called the ternary operator) produces a value and
is of the form:

expr ? expr#1 : expr#2

354 A P PE N D I X C More on Numbers and Expressions

P Q P&&Q P⎪⎪Q S ! S

false false false false false true
False true false true true false
True false false true
True true true true

TABLE C.4 Evaluation of Logical Expressions

The effect of applying these operators is shown in Table C.4.

Appendix.qxd 6/11/06 7:59 PM Page 354

If the expr evaluates to the Boolean value true, then the value of expr#1 is the
result produced. If expr evaluates to false, the value of expr#2 is the result.
Commonly, this operator is used to produce a value for assignment or a return
value. Examples of the conditional operator are:

def positive = x < 0 ? –x : x

def min(x, y) {
return x < y ? x : y

}

C.8 qualified numeric literals

So far, we have used the default decimal notation to represent integer literals.
However, we can qualify an integer literal as an octal or hexadecimal represen-
tation by prefixing it with 0 or 0x, respectively. For example, we might have 0xAB
and 0177 to represent decimal 171 and 127, respectively. Additionally, we can
append an integral suffix (I, L, or G) to an integer literal. The integer is then an
instance of the class Integer, Long, or BigInteger, respectively. Each is capable
of representing an increasing range of values. Where no suffix is given, the lit-
eral is an instance of the class into which the value will fit.

Floating-point literals are, by default, instances of the class BigDecimal.
Normally, we use the decimal notation but we may also use scientific notation.
In this case, the floating literal is appended with a letter E (or letter e) followed
by an optionally signed integer. This suffix represents some power of ten that is
applied to the value. For example, we might have 123E2 and 1.23e-2 to repre-
sent 12300.0 and 0.0123, respectively. As with integer literals, the suffixes F, D,
or G can be applied to floating point literals to qualify them as instances of the
class Float, Double, or BigDecimal, respectively.

Here are some valid examples:

123L // Long
456G // BigInteger
1.23F // Float
4.56D // Double
7.89G // BigDecimal

C.9 conversions

When a Groovy variable is introduced, it must be defined with the keyword def.
We can also use an explicit primitive type that introduces a statically typed

C.9 conversions 355

Appendix.qxd 6/11/06 7:59 PM Page 355

variable (see Section 10). In the following code fragment, the variable tempera-
ture is statically typed as a Double, while the age variable is untyped but its value
is determined at runtime to be an Integer.

double temperature = 32.0
def age = 25

Notice that temperature is actually a Double. We will discuss this shortly. Other
primitive types used in this book are int and boolean. For example, we might
have:

int age = 25

and

boolean result = age > 21

Now, age is statically typed to be an Integer and result statically typed to be a
Boolean.

Recall from our earlier discussions that everything in Groovy is an object
and so it is not surprising that each of the types int, double, and boolean ulti-
mately become Java classes Integer, Double, and Boolean. Therefore, tempera-
ture becomes an instance of the class Double, age an instance of the class
Integer, and result an instance of the class Boolean. In effect, a Groovy decla-
ration such as:

int age = 25

is equivalent to:

Integer age = new Integer(25)

However, expression evaluation with Groovy is more complex than just
making these changes. Recall that an integer accurately stores the value, but the
range of values available is limited. This applies to the int primitive as well as
its wrapper Integer class. It is also true that a floating-point value represented
in a binary form is not (usually) held accurately, although the range of values
available is greatly extended. This applies to the float and double primitives as
well as to their wrapper classes Float and Double.

An alternative is to use some other representation that allows numbers to be
held with arbitrary precision and range. The Java API provides the classes
BigInteger and BigDecimal for this purpose. Although we are not concerned

356 A P PE N D I X C More on Numbers and Expressions

Appendix.qxd 6/11/06 7:59 PM Page 356

with the details of such representations, we should be aware that they are nor-
mally inefficient when compared to their binary equivalents. Therefore, calcu-
lations with them take longer and require more computer memory.

Of course, Groovy provides access to all Java math classes and operations.
However, to make Groovy scripts with literal numeric values as intuitive as possi-
ble, a “least surprising” approach has been adopted. Therefore, a Groovy literal with
a decimal point is, by default, a BigDecimal rather than a Float or a Double. If
required, Float and Double types can be created explicitly or by using a suffix (see
Section 8). The scientific notation is also available should it be necessary.

Similarly, an integral numeric literal (without a suffix) is, by default, the
smallest type into which the value will fit; that is, it is an Integer, Long, or
BigInteger. As before, Integer and Long types can be created explicitly or by
using a suffix. The hexadecimal and octal notations are also available.

Another outcome of the “least surprising” approach is that Groovy never
automatically promotes a binary floating-point number to a BigDecimal. To do
so would imply a level of exactness to a result that is not guaranteed to be exact.
It is also true that performance is better with a binary representation and so once
it is introduced, it is kept. Therefore, binary operations involving BigDecimals,
BigIntegers, Doubles, Floats, Longs, and Integers automatically convert their
arguments according to Table C.5. The exception is division, which is discussed
next in the following text.

The division operators / and /= produce a Double result if either operand is
a Float or a Double. Otherwise, a BigDecimal is produced. In other words, the
operators behave normally. However, if integer division is required, it can be
performed on the integral types by casting the result of the division, as in:

(int) (3/2) // gives a result of 1

or by using the intdiv operation, as in:

3.intdiv(2) // gives a result of 1

C.9 conversions 357

BigDecimal BigInteger Double Float Long Integer

BigDecimal BigDecimal BigDecimal Double Double BigDecimal BigDecimal
BigInteger BigDecimal BigInteger Double Double BigInteger BigInteger
Double Double Double Double Double Double Double
Float Double Double Double Double Double Double
Long BigDecimal BigInteger Double Double Long Long
Integer BigDecimal BigInteger Double Double Long Integer

TABLE C.5 Argument Conversion Matrix

Appendix.qxd 6/11/06 7:59 PM Page 357

C.10 static typing

We are also permitted to statically type a variable in Groovy. We replace the key-
word def with one of the fundamental type names such as int or double, or
with a user-defined class name. Hence, we might have:

int age = 25
double temperature = 98.4
boolean isAdult = true

Statically typed variables can then be checked for their correct usage. For exam-
ple, in the context of the previously mentioned variable definitions, the follow-
ing would generate a cast class exception as a consequence of trying to assign a
string value to an int variable:

age = “Ken”

C.11 testing

The representation of numeric literal values and the evaluation of arithmetic
expressions is an important part of Groovy. However, it is potentially difficult
and confusing. Therefore, it is wise to be sure that Groovy behaves as we expect
it to. The following code for the GroovyMathTest class has some representative
unit tests (see Chapter 15) that help us achieve this aim. The tests are based
on assertions made in the Groovy home website (see http://groovy.codehaus.
org). Interested readers may add others as appropriate.

import groovy.util.GroovyTestCase

class GroovyMathTest extends GroovyTestCase {

void testExactLiteralDefaultCalculations() {
assertTrue(1.1 + 0.1 == 1.2)

}

void testOctal() {
assertTrue(0177 == 127)

}

358 A P PE N D I X C More on Numbers and Expressions

Appendix.qxd 6/11/06 7:59 PM Page 358

void testHexadecimal() {
assertTrue(0xAB == 171)

}

void testSuffixes() {
assertTrue(“I suffix”, 42I == new Integer(“42”))
assertTrue(“L suffix”, 123L == new Long(“123”))
assertTrue(“Long type”, 2147483648 == new Long(“2147483648”))
assertTrue(“G suffix #1”, 456G == new java.math.BigInteger(“456”))
assertTrue(“G suffix #2”, 123.45G == new java.math.BigDecimal(“123.45”))
assertTrue(“G suffix #3”, 123.45G == new Double(“123.45”))
assertTrue(“Default BigDecimal type”, 123.45 == new java.math.BigDecimal(“123.45”))
assertTrue(“D suffix”, 1.200065D == new Double(“1.200065”))
assertTrue(“F suffix”, 1.234F == new Float(“1.234”))
assertTrue(“E suffix”, 1.23E23D == new Double(“1.23E23”))
assertTrue(“e suffix”, 1.23e23D == new Double(“1.23e23”))

}

void testDivision() {
assertTrue(“Trailing zeros removed”, 1/2 == new java.math.BigDecimal(“0.5”))
assertTrue(“Normalized to 10 places #1”, 1/3 == new java.math.BigDecimal(“0.3333333333”))
assertTrue(“Normalized to 10 places #2”, 2/3 == new java.math.BigDecimal(“0.6666666667”))

}

void testIntegerDivisionByCasting() {
assertTrue((int)(3/2) == 1I)

}

void testIntegerDivisionByIntdiv() {
assertTrue(3.intdiv(2) == 1I)

}

void testBinaryOperationConvertionMatrix() {
// Many more assertions could be made.
//
assertTrue(“#1 G + G #1”, (123.45 + 67.8).getClass().getName() == “java.math.BigDecimal”)
assertTrue(“#1 G + G #2”, (123.45 + 67G).getClass().getName() == “java.math.BigDecimal”)
assertTrue(“#1 G + D”, (123.45 + 67.8D).getClass().getName() == “java.lang.Double”)
assertTrue(“#1 G + F”, (123.45 + 67.8F).getClass().getName() == “java.lang.Double”)
assertTrue(“#1 G + L”, (123.45 + 67L).getClass().getName() == “java.math.BigDecimal”)
assertTrue(“#1 G + I”, (123.45 + 67I).getClass().getName() == “java.math.BigDecimal”)
//
assertTrue(“#2 G + G #1”, (123 + 67.8).getClass().getName() == “java.math.BigDecimal”)
assertTrue(“#2 G + G #2”, (123 + 67G).getClass().getName() == “java.math.BigInteger”)
assertTrue(“#2 G + D”, (123 + 67.8D).getClass().getName() == “java.lang.Double”)
assertTrue(“#2 G + F”, (123 + 67.8F).getClass().getName() == “java.lang.Double”)

C.11 testing 359

Appendix.qxd 6/11/06 7:59 PM Page 359

assertTrue(“#2 G + L”, (123G + 67L).getClass().getName() == “java.math.BigInteger”)
assertTrue(“#2 G + I”, (123G + 67I).getClass().getName() == “java.math.BigInteger”)
//
assertTrue(“#3 L + L”, (123 + 67L).getClass().getName() == “java.lang.Long”)
assertTrue(“#3 I + I”, (123 + 67I).getClass().getName() == “java.lang.Integer”)

}

}

360 A P PE N D I X C More on Numbers and Expressions

Appendix.qxd 6/11/06 7:59 PM Page 360

more on
strings and
regular
expressions

A regular expression is a formula for matching strings to some pattern. They can
provide very powerful mechanisms for describing the pattern, for splitting a
string according to the pattern, or for modifying the string around the pattern.
At first sight, they can appear daunting because of their complicated construc-
tion. However, a little practice can greatly ease matters.

D.1 regular expressions

Regular expressions are essentially a specialized programming language hosted
within Groovy. They provide a means of determining whether a string matches
some pattern. For example, we might wish to determine whether a string has the
pattern of a social security number. We can also use regular expressions to split
a string in various ways or to modify a string.

A regular expression is presented as a String. However, some characters are
given special roles and are known as metacharacters. Much of this appendix is
devoted to demonstrating their effect within a regular expression. The
metacharacters we shall discuss are:

. ^ $ * + ? [] { } \ ⎪ ()

A short explanation of their meaning is given in Table D.1.

361

A P P E N D I X D

Appendix.qxd 6/11/06 7:59 PM Page 361

D.2 s ingle character match

The period character (.) in regular expressions matches any single character.
Example 01 illustrates with a set of assertions that are all true.

assert ‘Bat’ =~ ‘B.t’
assert ‘Bet’ =~ ‘B.t’
assert ‘But’ =~ ‘B.t’

362 A P PE N D I X D More on Strings and Regular Expressions

Metacharacter Description

. Matches any single character. For example, the regular expression
b.t would match the strings bat, bet, but not beat.

^ Matches the beginning of a line. For example, the regular expression
^Mat would match the beginning of the string Matches, but would
not match Football Matches.

$ Matches the end of a line. For example, the regular expression ball$
would match the end of the string Football, but would not match
Football Matches.

* Matches zero or more occurrences of the immediately preceding
character or regular expression. For example, the regular expression
A* matches any number of occurrences of A, that is, A, AA, AAA, and
so on.

+ Matches one or more occurrences of the immediately preceding
character or regular expression. For example, the regular expression
A+ matches any number of occurrences of A, that is, A, AA, AAA, etc.

? Matches zero or one occurrence of the immediately preceding char-
acter or regular expression.

[] Matches any one of the characters listed between the brackets. For
example, the regular expression B[aeu]t matches Bat, Bet, and But.

{ } Matches a specific number within a range of the immediately pre-
ceding character or regular expression. For example, the regular
expression [0-9]{3} matches exactly three digits.

\ The escape character, used to make the following character act as
itself, even where it is a metacharacter. For example, \$ represents
the dollar sign.

⎪ Or together two expressions. For example, the regular expression
(He|She) said matches both He said and She said.

() Consider the enclosed expression as a group, saving the matched
characters.

TABLE D.1 Metacharacters

EXAMPLE 01
Single character
match

Appendix.qxd 6/11/06 7:59 PM Page 362

assert ‘Batter’ =~ ‘B.tt.r’
assert ‘Better’ =~ ‘B.tt.r’
assert ‘Butter’ =~ ‘B.tt.r’

assert ‘B.t’ =~ ‘B\\.t’
assert !(‘Bat’ =~ ‘B\\.t’)

◆

D.3 match at the beginning

The caret character (^) in regular expressions matches only at the beginning of
the string. Example 02 illustrates with a set of assertions that are all true.

assert ‘Batter’ =~ ‘^Bat’
assert ‘Batter’ =~ ‘^Batt’
assert !(‘batter’ =~ ‘^Bat’)

◆

D.4 match at the end

The dollar sign character ($) in regular expressions matches only at the end of
the string. Example 03 illustrates with a set of assertions that are all true.

assert ‘Football’ =~ ‘ball$’
assert ‘Mothball’ =~ ‘ball$’
assert !(‘Dancehall’ =~ ‘ball$’)

◆

D.5 match zero or more

The asterisk character (*) in regular expressions matches zero or more occur-
rences of the immediately preceding character or regular expression. Example
04 illustrates with a set of assertions that are all true.

D.5 match zero or more 363

EXAMPLE 02
Match at the
beginning

EXAMPLE 03
Match at the end

Appendix.qxd 6/11/06 7:59 PM Page 363

assert ‘Ft’ =~ ‘Fo*t’
assert ‘Fot’ =~ ‘Fo*t’
assert ‘Foot’ =~ ‘Fo*t’
assert ‘Fooot’ =~ ‘Fo*t’

◆

D.6 match one or more

The plus character (+) in regular expressions matches one or more occurrences
of the immediately preceding character or regular expression. Example 05 illus-
trates with a set of assertions that are all true.

assert !(‘Ft’ =~ ‘Fo+t’)
assert ‘Fot’ =~ ‘Fo+t’
assert ‘Foot’ =~ ‘Fo+t’
assert ‘Fooot’ =~ ‘Fo+t’

◆

D.7 match none or one

The question mark character (?) in regular expressions matches none or one
occurrence of the immediately preceding character or regular expression.
Example 06 illustrates with a set of assertions that are all true.

assert ‘Shoe-shine’ =~ ‘Shoe-?shine’
assert ‘Shoeshine’ =~ ‘Shoe-?shine’

◆

D.8 match number

The repeating qualifier {m,n} in regular expressions matches at least m but not
more than n occurrences of the immediately preceding character or regular
expression. Both m and n are positive integer values. If n is omitted but the pre-
ceding comma is present, then this is interpreted as meaning at least m times. If
only one value n is given, it means exactly n occurrences. Example 07 illustrates
with a set of assertions that are all true.

364 A P PE N D I X D More on Strings and Regular Expressions

EXAMPLE 04
Match zero or more

EXAMPLE 05
Match one or more

EXAMPLE 06
Match none or one

Appendix.qxd 6/11/06 7:59 PM Page 364

assert ‘abc’ =~ ‘ab{1,3}c’
assert ‘abbc’ =~ ‘ab{1,3}c’
assert ‘abbbc’ =~ ‘ab{1,3}c’

assert !(‘ac’ =~ ‘ab{1,3}c’)
assert !(‘abbbbc’ =~ ‘ab{1,3}c’)

assert ‘abbbc’ =~ ‘ab{3}c’
assert !(‘abbc’ =~ ‘ab{3}c’)

assert ‘abbbc’ =~ ‘ab{3,}c’
assert ‘abbbbc’ =~ ‘ab{3,}c’
assert !(‘abbc’ =~ ‘ab{3,}c’)

◆

Note that the * modifier is equivalent to {0,}, the + modifier to {1,}, and the ?
modifier to {0,1}.

D.9 character classes

Character classes match a single character from a group of characters. The char-
acters are listed between the brackets [and]. Individual characters can be given
as [aeiou] (the vowels) or given as a range [a-z] (the lowercase letters). Multiple
ranges are also permitted as in [a-zA-Z] (the letters). To match any character
except those in the range, the complement character is used as in [^0-9] (i.e.,
any character other than a digit).

assert ‘0’ =~ ‘[0-9]{1,3}’
assert ‘01’ =~ ‘[0-9]{1,3}’
assert ‘012’ =~ ‘[0-9]{1,3}’
assert !(‘0123’ ==~ ‘[0-9]{1,3}’)
assert !(‘A45’ =~ ‘[0-9]{3}’)

assert ‘tan’ =~ ‘t[aeiou]n’
assert ‘ten’ =~ ‘t[aeiou]n’
assert ‘tin’ =~ ‘t[aeiou]n’
assert ‘ton’ =~ ‘t[aeiou]n’
assert ‘tun’ =~ ‘t[aeiou]n’
assert !(‘Tan’ =~ ‘t[aeiou]n’)

◆

If you wish to match a dash (-) in a character group, it has to be the first char-
acter, as in [-ab], so that it is not interpreted as the range-making character.

D.9 character classes 365

EXAMPLE 07
Match number

EXAMPLE 08
Character classes

Appendix.qxd 6/11/06 7:59 PM Page 365

D.10 alternation

Alternative patterns are expressed with the metacharacter ⎪. Usually, the alter-
natives use parentheses for groupings.

assert ‘tan’ =~ ‘t(a⎪e⎪i⎪o⎪u)n’
assert ‘ten’ =~ ‘t(a⎪e⎪i⎪o⎪u)n’
assert ‘tin’ =~ ‘t(a⎪e⎪i⎪o⎪u)n’
assert ‘ton’ =~ ‘t(a⎪e⎪i⎪o⎪u)n’
assert ‘tun’ =~ ‘t(a⎪e⎪i⎪o⎪u)n’
assert ‘toon’ =~ ‘t(a⎪e⎪i⎪oo⎪u)n’

◆

D.11 miscellaneous notations

Some shorthand notations for commonly used regular expressions have been
developed. Table D.2 lists some of these.

Regular expressions use the backslash character \ to cancel the meaning of
special characters. Unfortunately, this conflicts with Groovy’s usage of the same
character as an escape character in string literals. The consequence is that we
must escape any backslash character with a further backslash. This is shown in
the following:

assert ‘12:34’ =~ ‘\\d{2}:\\d{2}’
assert !(‘2:34’ =~ ‘\\d{2}:\\d{2}’)

assert ‘Hello world’ =~ ‘\\w*\\s*\\w*’
assert !(‘Hello world Groovy’ ==~ ‘\\w*\\s*\\w*’)

◆

366 A P PE N D I X D More on Strings and Regular Expressions

EXAMPLE 09
Alternation

EXAMPLE 10
Miscellaneous
notations

Shorthand Equivalent Notation Description

\d [0-9] Digit
\D [^0-9] Non-digit
\w [a-zA-Z0-9] A word character
\W [^a-zA-Z0-9] A non-word character
\s [\t\n\f\r\v] A whitespace character
\S [^\s] A non-whitespace character

TABLE D.2 Shorthand Notations

Appendix.qxd 6/11/06 7:59 PM Page 366

D.12 grouping

Parentheses around some part of a regular expression establish a group that can
be later retrieved from the matched string. That way, a regular expression can be
used to dissect a string into subgroups. For example, a U.S. social security num-
ber is of the form 999-99-9999, meaning three digits, a hyphen, two digits,
another hyphen, and four digits. Example 11 includes a regular expression for
this, which also retrieves the three numeric subgroups.

def SSNPATTERN = ‘([0-9]{3})-([0-9]{2})-([0-9]{4})’
def ssN = ‘123-45-6789’

def matcher = ssN =~ SSNPATTERN
matcher.matches()

println “matcher[0]: <${matcher[0]}>”
println “matcher[0][0]: <${matcher[0][0]}>”
println “matcher[0][1]: <${matcher[0][1]}>”
println “matcher[0][2]: <${matcher[0][2]}>”
println “matcher[0][3]: <${matcher[0][3]}>”

◆

The variable matcher is an object of the Matcher class (see the JDK documenta-
tion). It is used to perform differing kinds of matching operations. For exam-
ple, method matches attempts to match the entire text against the pattern. The
GDK augments this class with the method getAt to provide support for the
indexing operator. Then, for example, matcher[0][1] represents the 0th match
of the whole pattern and the first group within that match. Output from this
program is:

matcher[0]: <[“123-45-6789”, “123”, “45”, “6789”]>
matcher[0][0]: <123-45-6789>
matcher[0][1]: <123>
matcher[0][2]: <45>
matcher[0][3]: <6789>

Example 12 illustrates groupings get the parts of a United Kingdom car reg-
istration (license) plate. Its form is XX99 XXX. The two digits can be used to
determine the date of registration. For example, 01 represents April 2001, 51 is
September 2001, 02 is April 2002, and so on.

D.12 grouping 367

EXAMPLE 11
U.S. social
security number

Appendix.qxd 6/11/06 7:59 PM Page 367

368 A P PE N D I X D More on Strings and Regular Expressions

EXAMPLE 12
U.K. car
registration plate

EXAMPLE 13
Dates

def UKPATTERN = ‘([A-Z]{2})([0-9]{2})\\s([A-Z]{3})’
def ukPlate = ‘SK51 PIQ’

def matcher = ukPlate =~ UKPATTERN
matcher.matches()

println “matcher[0]: <${matcher[0]}>”
println “matcher[0][0]: <${matcher[0][0]}>”
println “matcher[0][1]: <${matcher[0][1]}>”
println “matcher[0][2]: <${matcher[0][2]}>”
println “matcher[0][3]: <${matcher[0][3]}>”

The output is:

matcher[0]: <[“SK51 PIQ”, “SK”, “51”, “PIQ”]>
matcher[0][0]: <SK51 PIQ>
matcher[0][1]: <SK>
matcher[0][2]: <51>
matcher[0][3]: <PIQ>

◆

The final illustration is of a date expressed as MMM DD, YYYY. An example is
NOV 28, 2005. Example 13 produces the output:

matcher[0]: <[“NOV 28, 2005”, “NOV”, “28”, “2005”]>
matcher[0][0]: <NOV 28, 2005>
matcher[0][1]: <NOV>
matcher[0][2]: <28>
matcher[0][3]: <2005>

def DATEPATTERN = ‘([A-Z]{3})\\s([0-9]{1,2}),\\s([0-9]{4})’
def date = ‘NOV 28, 2005’

def matcher = date =~ DATEPATTERN
matcher.matches()

println “matcher[0]: <${matcher[0]}>”
println “matcher[0][0]: <${matcher[0][0]}>”
println “matcher[0][1]: <${matcher[0][1]}>”
println “matcher[0][2]: <${matcher[0][2]}>”
println “matcher[0][3]: <${matcher[0][3]}>”

◆

Appendix.qxd 6/11/06 7:59 PM Page 368

more on lists ,
maps, and
ranges

The Groovy interpreter plays an important role when we invoke methods on an
object declared in a Groovy script. Essentially, the interpreter intercepts these
method calls so that it can add behaviors not present in the Java core classes. In
this manner, Groovy designers have been able to extend the functionality of the
Java core classes (the JDK) so that they are more Groovy-like. However, it is
important to understand that the JDK itself is unchanged. For example, if we
call the method each (see Chapter 9) on a List, as in:

def numbers = [11, 12, 13, 14]
numbers.each {it -> println it*2}

then we should appreciate that no such method exists in any class in the JDK.
The interpreter makes it look as if a List object has this method present, even
though it is absent at the JVM level. In a similar manner, the functionality of
the Map class has been extended. We will describe this extra functionality as the
Groovy GDK methods.

We should also understand that when we define a List, as in:

def numbers = [11, 12, 13, 14]

then Groovy’s dynamic typing ability comes into play. As we have assigned a lit-
eral List value, numbers is made to reference an ArrayList at runtime.

369

A P P E N D I X E

Appendix.qxd 6/11/06 7:59 PM Page 369

However, even though it is a normal JDK ArrayList, it can, by virtue of the
Groovy GDK methods, respond to additional methods such as each. Similarly,
when we define a Map with:

def names = [‘Ken’ : ‘Barclay’, ‘John’ : ‘Savage’]

then, at runtime, names references a HashMap. As before, its behavior is extended
by the Groovy GDK methods.

E.1 classes

When we refer to a List, we mean an object that behaves according to the inter-
face List but whose actual type does not concern us. We further qualify this last
statement by extending the behavior to include Groovy GDK methods associ-
ated with Lists. We have noted that the default implementation is an
ArrayList:

def numbers = [1, 2, 3]
println “numbers: ${numbers.getClass().getName()}” // java.util.ArrayList

If required, we can nominate a different representation with the as clause:

def numbers = [] as LinkedList
numbers.addAll([1, 2, 3])
println “numbers: ${numbers.getClass().getName()}” // java.util.LinkedList

We must be careful, however, with statements such as:

def numbers = [] as LinkedList
numbers = numbers + [1, 2, 3]
println “numbers: ${numbers.getClass().getName()}” // java.util.ArrayList

Here, the assignment to the variable numbers does so using the default
ArrayList implementation. In the earlier illustration, the variable numbers
remains as a LinkedList since we are simply invoking the addAll method on it.

The as clause can only be applied to an empty List. Were we to use:

def numbers = [1, 2, 3] as LinkedList

370 A P PE N D I X E More on Lists, Maps, and Ranges

Appendix.qxd 6/11/06 7:59 PM Page 370

this would raise a class cast exception since we are attempting to coerce an
ArrayList object into a LinkedList object, and this is not possible since the class
LinkedList does not subclass ArrayList.

The as clause can be usefully employed when a method, such as a method
from the JDK, requires an array of values for its actual parameter. If our code
has a List with the values to pass to that method, we do the following:

def names = [‘Ken’, ‘John’, ‘Jessie’]

def someMethod(String[] args) { ... }

someMethod(names as String[]) // convert to required type

E.2 lists

Chapter 4 identified that the List methods getAt and putAt support using the
indexing operator on, respectively, the right and left sides of an assignment.
Hence:

def numbers = [1, 2, 3]
def x = numbers[1] // x = numbers.getAt(1)
numbers[1] = 22 // numbers.putAt(1, 22)

If we make an assignment using the indexing operator to an index beyond the
current size of a List, then the null value is auto-generated for the other indices.
In the following example, the variable numbers is originally of size 3. The
assignment then increases it to size 10, with the indices 3 through 8, inclusive,
representing the null value.

def numbers = [0, 1, 2]
println “numbers: ${numbers}” // numbers: [0, 1, 2]
numbers[9] = 9

Additionally, an index value beyond the size of a List returns null:

println “numbers[20]: ${numbers[20]}” // numbers[20]: null

println “numbers: ${numbers}” // numbers: [0, 1, 2, null, null, null, null, null, null, 9]

E.2 lists 371

Appendix.qxd 6/11/06 7:59 PM Page 371

E.3 ranges

A Range literal such as 1..10 is an instance of the class IntRange. This class
implements the Range interface and extends the AbstractList class. The Range
interface introduces the methods getFrom, getTo, and isReverse. Extending
AbstractList means that a Range also supports List methods. This is illustrated
in the following fragment:

def rng = 1..10
println “rng: ${rng.getClass().getName()}” // groovy.lang.IntRange

println “to, from: ${rng.getFrom()} ${rng.getTo()}” // to, from: 1 10

println “get: ${rng.get(0)}” // get: 1

Not all List methods are appropriate for a Range, and they should not be used.
For example, rng.set(0, 99) will generate an unsupported operation exception.

There are a small number of special cases that require care. These are shown
in the listing:

println “1..1: ${1..1}” // 1..1: [1]
println “1..0: ${1..0}” // 1..0: [1, 0]
println “1..<2: ${1..<2}” // 1..<2: [1]
println “1..<1: ${1..<1}” // 1..<1: []

The first and third examples are Ranges with a single value. The second exam-
ple is a Range of two values in reverse order. The final example is the potential
pitfall since it a Range with no values.

E.4 the spread operator

The spread operator is provided to spread the elements of a List into another
List or spread the elements of a Map into another Map. The spread operator for
a List is denoted by the * symbol. Consider the code:

def x = [2, 3]
def y = [0, 1, *x, 4, *[5, 6, 7]]
println “y: ${y}” // y: [0, 1, 2, 3, 4, 5, 6, 7]

The variable y represents a List in which the elements of the List denoted by
the variable x and the literal [5, 6, 7] are spread into y.

372 A P PE N D I X E More on Lists, Maps, and Ranges

Appendix.qxd 6/11/06 7:59 PM Page 372

In a similar manner, the symbol *: is the spread operator for use with Maps.
In the following, Map x and literal Map [6 : ‘f’, 7 : ‘g’] are absorbed into
the Map y.

def x = [3 : ‘c’, 4 : ‘d’]
def y = [1 : ‘a’, 2 : ‘b’, *:x, 5 : ‘e’, *:[6 : ‘f’, 7 : ‘g’]]
println “y: ${y}”

// y: [2:”b”, 4:”d”, 6:”f”, 1:”a”, 3:”c”, 7:”g”, 5:”e”]

E.5 testing

It is always worthwhile conducting a few simple tests even if they just confirm
that our understanding of a particular aspect of Groovy is correct. The follow-
ing GroovyTestCase is an example of these kinds of tests. Others can be easily
added.

import groovy.util.GroovyTestCase

class GroovyJDKTests extends GroovyTestCase {

// Establish the fixture
def obj
def table
def count

void setUp() {
obj = new Object();
table = [11,12,13,14]
count = 0

}

// ***
// Object tests
// ***

// Show that we have an Object
void testObjectClassName() {

def className = obj.getClass().getName()
assertTrue(className == “java.lang.Object”)

}

E.5 testing 373

Appendix.qxd 6/11/06 7:59 PM Page 373

// Show that we have a toString method
void testObjecttoStringMethodName() {

def methods = obj.getClass().getMethods()
def methodNames = methods.collect{ element -> return element.getName() }
assertTrue(methodNames.contains(“toString”))

}

// Show that we have the correct number of public methods from JDK Object
void testObjectMethodNumber() {

def methods = obj.getClass().getMethods()
assertTrue(methods.length == 9)

}

// Show that we don’t have an each method
void testObjectEachMethodName() {

def methods = obj.getClass().getMethods()
def methodNames = methods.collect{ element -> return element.getName() }
assertFalse(methodNames.contains(“each”))

}

// Show that we can send the each message
void testEachMethodCallForAnObject() {

obj.each {element -> count++ }
assertTrue(count == 1)

}

// ***
// List tests
// ***

// Show that we have an ArrayList
void testListClassName() {

def className = table.getClass().getName()
assertTrue(className == “java.util.ArrayList”)

}

// Show that we have a size method
void testListSizeMethodName() {

def methods = table.getClass().getMethods()
def methodNames = methods.collect{ element -> return element.getName() }
assertTrue(methodNames.contains(“size”))

}

// Show that we have the correct number of public methods from JDK ArrayList
void testArrayListMethodNumber() {

def methods = table.getClass().getMethods()

374 A P PE N D I X E More on Lists, Maps, and Ranges

Appendix.qxd 6/11/06 7:59 PM Page 374

assertTrue(methods.length == 35)
}

// Show that we don’t have an each method
void testListEachMethodName() {

def methods = obj.getClass().getMethods()
def methodNames = methods.collect{ element -> return element.getName() }
assertFalse(methodNames.contains(“each”))

}

// Show that we can send the each message
void testEachMethodCallForAList() {

table.each {element -> count++ }
assertTrue(count == 4)
}

}

E.5 testing 375

Appendix.qxd 6/11/06 7:59 PM Page 375

A P P E N D I X F
more on
simple input
and output

In this appendix, we provide some further examples of formatted output and
consider the input class Console, introduced in Chapter 5.

F.1 formatted output

A conversion specification in the format string is introduced with the percent
(%) character. Then, there is a series of options to the conversion. The specifica-
tion ends with the conversion operation expressed as a single character. The gen-
eral definition for a conversion specification is then:

%[index$][flags][width][.precision]conversion

The optional index is an unsigned integer indicating the position of the param-
eter in the parameter list. The first argument is referenced by 1$, the second by
2$, and so on. We shall not illustrate this option. The optional flags is a set of
characters that modify the output format. The set of valid flags will depend on
the conversion. The optional width is a non-negative decimal integer indicating
the minimum number of characters to be written to the output. The optional
precision is a non-negative decimal integer usually used to restrict the number
of characters. The specific behavior depends on the conversion. Finally, the
required conversion is a character indicating how the argument should be
formatted. The set of valid conversions for a given argument depends on the
parameter type.

376

Appendix.qxd 6/11/06 7:59 PM Page 376

Not all possible combinations are explored in this appendix. There are sim-
ply too many. Here, we provide an explanation for a range of common exam-
ples. The reader is referred to the documentation for the Formatter class (JDK)
for a complete description.

In all our examples, the actual output value is surrounded with [and] to
emphasize what is actually produced by the conversion. The actual effect is
given alongside the printf statement as a comment.

Example 01 illustrates using the %d conversion to print integer values. The
%d conversion is for the signed decimal conversion of an integer value. Observe
how the – flag left justifies the output, while the + flag guarantees a preceding
sign on the value. The 0 flag specifies that leading spaces are to be replaced with
leading zeros.

def j = 45
def k = −123
def jj = 123456780

printf(“[%d]\n”, [k]) // [−123]
printf(“[%4d]\n”, [j]) // [45]
printf(“[%−5d]\n”, [j]) // [45]
printf(“[%05d]\n”, [j]) // [00045]
printf(“[%2d]\n”, [k]) // [−123]
printf(“[%+4d]\n”, [j]) // [+45]
printf(“[%+05d]\n”, [j]) // [+0045]
printf(“[%d]”, [jj]) // [123456789]

◆

Example 02 uses the %f for the signed decimal conversion of floating-point val-
ues. The specifications include examples such as 10.2, which denote a total field
width of 10 character places and a precision of 2 decimal places.

def x = 12.345
def y = −678.9

printf(“[%f]\n”, [y]) // [−678.900000]
printf(“[%−10.2f]\n”, [x]) // [12.35]
printf(“[%+8.1f]\n”, [x]) // [+12.3]
printf(“[%.2f]\n”, [y]) // [−678.90]
printf(“[%08.2f]\n”, [x]) // [00012.35]
printf(“[%+06.1f]\n”, [x]) // [+012.3]

◆

F.1 formatted output 377

EXAMPLE 01
%d conversion

EXAMPLE 02
%f conversion

Appendix.qxd 6/11/06 7:59 PM Page 377

The %e and %E conversions are used to present floating-point values in scientific
notation. The form for this is d.dddddde+dd (for %e conversion) and
d.ddddddE+dd (for %E conversion). The optional precision specifies the number
of decimal places (six is the default). Example 03 presents some illustrations.

def x = 12.345
def y = −678.9

printf(“[%e]\n”, [x]) // [1.234500e+01]
printf(“[%E]\n”, [x]) // [1.234500E+01]
printf(“[%14.4e]\n”, [x]) // [1.2345e+01]
printf(“[%−12.1E]\n”, [y]) // [−6.8E+02]
printf(“[%+12.2E]\n”, [x]) // [+1.23E+01]
printf(“[%.2e]\n”, [y]) // [−6.79e+02]
printf(“[%10.0e]\n”, [x]) // [1e+01]

◆

In Example 04, we show how to format a String value with the %s conversion.
Some care is required where the optional precision denotes how many charac-
ters of the String to output.

def message = “Hello”

printf(“[%s]\n”, [message]) // [Hello]
printf(“[%8s]\n”, [message]) // [Hello]
printf(“[%−8s]\n”, [message]) // [Hello]
printf(“[%6.2s]\n”, [message]) // [He]
printf(“[%−10.6s]\n”, [message]) // [Hello]

◆

The last example in this section illustrates what happens when too many or too
few values are available to the format string. In the second illustration, the extra
values are simply ignored. In the final illustration, an exception is raised when
there are insufficient values provided.

def x = 21
def y = 22
def z = 23

printf(‘First: %d, second: %d\n’, [x, y]) // ok
printf(‘First: %d, second: %d\n’, [x, y, z]) // extras ignored
//printf(‘First: %d, second: %d\n’, [x]) // raise exception

◆

378 A P PE N D I X F More on Simple Input and Output

EXAMPLE 03
%e and %E
conversions

EXAMPLE 04
%s conversion

EXAMPLE 05
Too many and too
few values

Appendix.qxd 6/11/06 7:59 PM Page 378

F.2 console class

Chapter 5 introduced the user class Console to read various kinds of values from
the user console. Essentially, it is a series of static methods which obtain the
next input value from a line buffer. When the buffered line is exhausted, it is
refreshed with new user input. Here is the class:

package console

class Console {

def static readLine() {
return getNextLine()

}

def static readString() {
return getNextToken()

}

def static readInteger() {
return getNextToken().toInteger()

}

def static readDouble() {
return getNextToken().toDouble()

}

def static readBoolean() {
return (getNextToken() == “true”)

}

private static String getNextToken() {
if(inputLine == null)

readInputLine()

while(inputIndex == numberOfTokens)
readInputLine()

return inputTokens[inputIndex++]
}

private static String getNextLine() {
if(inputLine == null)

readInputLine()

F.2 console class 379

Appendix.qxd 6/11/06 7:59 PM Page 379

while(inputIndex == numberOfTokens)
readInputLine()

def line = inputTokens[inputIndex..<numberOfTokens].join(‘ ‘)
inputIndex = numberOfTokens
return line

}

private static void readInputLine() {
inputLine = System.in.readLine()
inputTokens = inputLine.tokenize()
numberOfTokens = inputTokens.size()
inputIndex = 0

}

// -----properties ------------------

private static String inputLine = null
private static List inputTokens = null
private static int numberOfTokens = 0
private static int inputIndex = −1

}

Clearly, it could be more elaborate. However, we have deliberately chosen to
keep things simple. An example of its usage is shown in the following example:

import console.*

def lastName = Console.readString() // input: Barclay
println “lastName: ${lastName}” // lastName: Barclay

def name = Console.readString() // input: Ken Barclay
println “name: ${name}” // name: Ken

name = Console.readLine() // input: NONE!!!
println “name: ${name}” // name: Barclay

When the program executes, the following is produced:

Barclay
lastName: Barclay
Ken Barclay
name: Ken
name: Barclay

380 A P PE N D I X F More on Simple Input and Output

Appendix.qxd 6/11/06 7:59 PM Page 380

The first line is the input value given by the user. This is the input consumed
by the first call to readString. The value is stored in the lastName variable, and
then output as the second line. The second call to readString buffers the input
shown as the third line. From this, it obtains Ken as the input, assigns it to the
variable name, and prints it as line four. Finally, the readLine method call
requires no further user input since the buffer stills holds the remainder from
line three. The name is printed as shown on the final line

F.2 console class 381

Appendix.qxd 6/11/06 7:59 PM Page 381

A P P E N D I X G
more on
methods

A method that can make a call on itself is known as a recursive method. When
the method makes a direct call on itself from within its own method body, we
refer to this as direct recursion. When one method calls another that, in turn,
calls the first again, we refer to this as indirect recursion. Recursion is an
extremely powerful approach for expressing many elegant programming solutions.

In this appendix, we demonstrate recursive methods as well as other aspects
of methods such as statically typed parameters and return values.

G.1 recursive methods

A method may invoke any other method. Programmers exploit this facility to
build programs hierarchically, in which one method invokes submethods to per-
form subsidiary tasks. These submethods might invoke further submethods to
perform simpler tasks, and so on.

This is not the only way of using methods. In particular, a method may call
(or invoke) itself. Such a method is said to be recursive. Many programming
problems have solutions that are expressible directly or indirectly through recur-
sion. The ability to map these solutions on to recursive methods often leads to
elegant and natural implementations.

To illustrate, consider a method to evaluate the factorial of a number. The
factorial of a positive integer n, written n!, is defined as the product of the suc-
cessive integers 1 through n inclusive. The factorial of 0 is treated as a special
case and is defined as equal to 1. Therefore:

382

Appendix.qxd 6/11/06 7:59 PM Page 382

n! = n * (n − 1) * (n − 2) * ... * 3 * 2 * 1

and

0! = 1

It follows that:

n! = n * ((n − 1) * (n − 2) * ... * 3 * 2 * 1)

and thus:

n! = n * (n − 1)!

Example 01 demonstrates a factorial method for this purpose. Observe how the
if statement selects the return value according to the value of the parameter n.

def factorial(n) {
if(n == 0)

return 1
else

return n * factorial(n − 1)
}

def fact5 = factorial(5)
println “factorial(5): ${fact5}”

The output from the program is:

factorial(5): 120

◆

For many List processing applications, it is common to have methods head,
tail, and cons. Respectively, they return the first item in a list (or null if the list
is empty), return a new list with the first item removed, and return a new list
with a new item at its head. These methods are shown in Example 02. They are
then used to develop the methods upTo and prod. Method upTo returns a list of
integers as given by the method parameters. Method prod multiplies all the inte-
gers in a list of integers. Both upTo and prod are defined recursively. Finally, upTo
and prod can be used to define another version of factorial.

G.1 recursive methods 383

EXAMPLE 01
Recursive
factorial method

Appendix.qxd 6/11/06 7:59 PM Page 383

def head(list) {
return (list.size() == 0) ? null : list[0]

}

def tail(list) {
def size = list.size()
return (size == 0) ? [] : list[1..<size]

}

def cons(item, list) {
def copy = list
copy.add(0, item)
return copy

}

def upTo(m, n) {
if(m > n)

return []
else

return cons(m, upTo(m + 1, n))
}

def prod(list) {
if(head(list) == null)

return 1
else

return head(list) * prod(tail(list))
}

def factorial(n) {
return prod(upTo(1, n))

}

println “factorial(5): ${factorial(5)}”

This program produces the same output as the previous program.

◆

G.2 static typing

Our methods have been defined with dynamic typing for both the method
parameters and the method return. This feature makes the methods more
generic, as demonstrated in Example 03. Here, method times returns the result
of multiplying its two parameters. Three calls are made to this method with

384 A P PE N D I X G More on Methods

EXAMPLE 02
List handling

Appendix.qxd 6/11/06 7:59 PM Page 384

various actual parameter types. Since the * operator is applicable in all the given
situations, everything executes as expected.

def times(x, y) {
return x * y

}

println “times(3, 4): ${times(3, 4)}”
println “times(3.1, 4.2): ${times(3.1, 4.2)}”
println “times(‘Hello’, 4): ${times(‘Hello’, 4)}”

The output from this program is:

times(3, 4): 12
times(3.1, 4.2): 13.02
times(‘Hello’, 4): HelloHelloHelloHello

◆

The return type and the types for the formal parameters of a method can
also be given statically. This is sometimes necessary when we wish to redefine a
method from a Java superclass. In this case, we must specify the actual types
involved. Such statically typed methods also introduce an element of security
since they cannot be called without actual parameters of the required type.

Example 04 repeats the previous example, but this time the method times
has its types statically defined. The last two calls then generate errors since the
actual parameters are of the incorrect types.

int times(int x, int y) {
return x * y

}

println “times(3, 4): ${times(3, 4)}”
//println “times(3.1, 4.2): ${times(3.1, 4.2)}” // missing method exception
//println “times(‘Hello’, 4): ${times(‘Hello’, 4)}” // missing method exception

◆

Had we wished to allow method times to accept numeric types, then we
would relax the constraint that the parameters and return type are integers and
replace with the class name Number, the superclass for all numeric types.
Example 05 is an update for the previous example.

G.2 static typing 385

EXAMPLE 03
Dynamically typed
methods

EXAMPLE 04
Statically typed
methods

Appendix.qxd 6/11/06 7:59 PM Page 385

Number times(Number x, Number y) {
return x * y

}

println “times(3, 4): ${times(3, 4)}”
println “times(3.1, 4.2): ${times(3.1, 4.2)}”

◆

This then makes a compelling case for redefining the factorial method intro-
duced in Example 01 as one with a single integer parameter and returning an inte-
ger result. This we show in Example 06, where the call factorial(5.1) reports that
no method entitled factorial is defined with a BigDecimal formal parameter.

int factorial(int n) {
if(n == 0)

return 1
else

return n * factorial(n − 1)
}

println “factorial(5): ${factorial(5)}”
println “factorial(5.1): ${factorial(5.1)}” // missing method exception

◆

G.3 actual parameter agreement

The actual parameters in a method call must match exactly the number of formal
parameters given in the method definition. Otherwise, Groovy will report a missing
method exception. The final two method calls in Example 07 report this error. The
first of these has too few actual parameters. The second has too many parameters.

def meth(a, b, c) {
println “meth(${a}, ${b}, ${c})”

}

meth(1, 2, 3)
meth(1, 2) // missing method
meth(1, 2, 3, 4) // missing method

◆

386 A P PE N D I X G More on Methods

EXAMPLE 05
Typed method

EXAMPLE 06
Statically typed
factorial method

EXAMPLE 07
Missing method

Appendix.qxd 6/11/06 7:59 PM Page 386

G.4 method overloading

Groovy supports method overloading. An overloaded method is one within the
same scope as another, with the same name but with a different number of
parameters. When such a method is called, then the correct method is resolved
by a process of parameter matching. The number of actual parameters is used to
determine which method to invoke. This is demonstrated in Example 08.

def times(x, y) {
return x * y

}

def times(x) {
return 2 * x

}

println “times(3, 4): ${times(3, 4)}”
println “times(3): ${times(3)}”

Here, method times is overloaded to take two or one parameter(s). The first call
provides two actual parameters and this is resolved to the first implementation.
The second call is resolved to the second definition. Output from this program
confirms this behavior:

times(3, 4): 12
times(3): 6

◆

G.5 default parameter ambiguity

Default method parameters and overloaded methods introduce a possible ambi-
guity. Consider Example 09.

def times(x, y = 4) {
return x * y

}

def times(x) {
return 2 * x

}

println “times(3, 5): ${times(3, 5)}”
println “times(3): ${times(3)}”

G.5 default parameter ambiguity 387

EXAMPLE 08
Method overloading

EXAMPLE 09
Default parameter
ambiguity

Appendix.qxd 6/11/06 7:59 PM Page 387

In this example, the method times has been overloaded and method calls would
be resolved by the number of actual parameters. Additionally, the first version
of this method has a default value for its second parameter. This could, poten-
tially, conflict with the second method definition. The first call, times(3, 5), is
resolved to the first method definition. The second call, times(3), might be
interpreted as the first method with the second value defaulted or to the second
method with its single parameter. Groovy resolves this potential ambiguity by
giving preference to the method with the exact number of parameters. This is
shown by the program output:

times(3, 5): 15
times(3): 6

◆

This kind of ambiguity can, of course, be clarified by the use of static typing of
the parameters. Consider Example 10:

def times(String str, num = 1) {
return str * num

}

def times(x) {
return 2 * x

}

println “times(‘Hello’, 3): ${times(‘Hello’, 3)}”
println “times(‘Hello’): ${times(‘Hello’)}”
println “times(3): ${times(3)}”
println “times(1.2): ${times(1.2)}”

When this script is executed, the output is:

times(‘Hello’, 3): HelloHelloHello
times(‘Hello’): Hello
times(3): 6
times(1.2): 2.4

Note how the second line of output reveals that there is no ambiguity where the
only parameter is a String.

◆

388 A P PE N D I X G More on Methods

EXAMPLE 10
Statically typed
method parameters

Appendix.qxd 6/11/06 7:59 PM Page 388

G.6 collections as method
parameters and return values

The next illustration introduces the method split that accepts a List of lines
of text as input and splits each line into its individual words. The program then
sorts the words into alphabetic order.

G.6 collections as method parameters and return values 389

EXAMPLE 11
Word split a list
of lines

def split(lines) {
def words = []
lines.each { line ->

def wordsInLine = line.tokenize()
words.addAll(wordsInLine)

}
return words

}

def doc = [‘This is the first line’, ‘This is the second line’, ‘This is the third line’]
def words = split(doc).sort()

words.each { word ->
println “${word}”

}

Running this program produces:

This
This
This
first
is
is
is
line
line
line
second
the
the
the
third

◆

Appendix.qxd 6/11/06 7:59 PM Page 389

A word concordance is an alphabetical list of words from a piece of text.
The text is represented as a series of lines containing the individual words. The
concordance lists each word and the set of line numbers in which the word
occurs.

390 A P PE N D I X G More on Methods

EXAMPLE 12
Word concordance

import java.util.*

def concordance(lines) {
def lineNumber = 1
def concord = [:]
lines.each { line ->

def wordsInLine = line.tokenize()
wordsInLine.each { word ->

if(concord[word] == null)
concord[word] = [lineNumber]

else
concord[word] << lineNumber

}
lineNumber++

}
return concord

}

def printConcordance(concordance) {
def words = concordance.keySet().sort()
words.each { word ->

print “${word} “
concordance[word].each { lineNumber -> print “${lineNumber} “}
println()

}
}

def doc = [“This is the first line”, “This is the second line”,“This is the third line”]
def concord = concordance(doc)
printConcordance(concord)

The concordance method operates on each line of text. Each line is split
into individual words using the tokenize method. If the word is presently not
part of the concordance, then the word and its line number are put into the con-
cordance Map. If the word is already present, then the line number is appended
on to the existing list of line numbers for this word. When this processing is
completed the method printConcordance arranges the output in alphabetical

Appendix.qxd 6/11/06 7:59 PM Page 390

order. We do this by getting the keys from the Map, sorting them, and then
accessing the Map with the sorted keys. The program output is:

This: 1 2 3
first: 1
is: 1 2 3
line: 1 2 3
second: 2
the: 1 2 3
third: 3

◆

In the next example, a series of data values (perhaps obtained from a data file),
represent individual expense claims made by staff members. The data are repre-
sented in the following text, with the name of the claimant, the amount
claimed, and the reason for the expenditure.

John 45.00 Train
Ken 102.20 Air
etc

A method to process this data and obtain the total amount claimed is shown in
Example 13.

def totalExpenses(expenseLines) {
def total = 0
expenseLines.each { expenseLine ->

def expense = expenseLine.tokenize()
total += expense[1].toDouble()

}
return total

}

def expensesData = [‘John 45.00 Train’,
‘Ken 102.20 Air’,
‘Sally 22.20 Supplies’
]

println “Total expenses: ${totalExpenses(expensesData)}”

◆

We might consider separating the expense amount, such as 102.20, into
two separate values 102 and 20, representing the dollars and cents, and doing

G.6 collections as method parameters and return values 391

EXAMPLE 13
Expenses

Appendix.qxd 6/11/06 7:59 PM Page 391

all the arithmetic with integer values. In that case, we could first tokenize each
expense line into its three constituents, and then use a regular expression to
obtain the groups of digits representing the dollar and cent value. This is shown
next.

def totalExpenses(expenseLines) {
def total = 0
expenseLines.each { expenseLine ->

def expense = expenseLine.tokenize()
def matcher = expense[1] =~ ‘([0-9]*)\\.([0-9]*)’
matcher.matches()
total += 100 * matcher[0][1].toInteger() + matcher[0][2].toInteger()

}
return total / 100

}

def expensesData = [‘John 45.00 Train’,
‘Ken 102.20 Air’,
‘Sally 22.20 Supplies’
]

println “Total expenses: ${totalExpenses(expensesData)}”

◆

392 A P PE N D I X G More on Methods

EXAMPLE 14
Expenses

Appendix.qxd 6/11/06 7:59 PM Page 392

more on
closures

Chapter 9 introduced closures and demonstrated their importance when iterat-
ing over collections. We also described general aspects of closures including clo-
sure parameters. Here, we consider other details concerning closures including
default parameters, the distinction between closures and methods, and closures
and scope rules. We also tabulate and describe the methods for Lists, Maps, and
Ranges that take a closure as parameter.

H.1 closures and ambiguity

Example 06 in Chapter 9 outlined how a closure appearing as the final actual
parameter to a method call may be removed from the list of actual parameters
and placed immediately following the closing parenthesis. If meth represents a
method with three parameters:

def meth(a, b, c) {...}

and clos is a closure variable, {...} a closure literal, and x and y two arbitrary
values, then the following observations are made:

meth(x, y, {...}) // OK
meth(x, y) {...} // OK
meth(x, y, clos) // OK
meth(x, y) clos // ERROR: no such method

393

A P P E N D I X H

Appendix.qxd 6/11/06 7:59 PM Page 393

The second line illustrates placing the closure literal after the method call
parameters. The fourth line demonstrates that this same technique may not be
used with a closure variable. The Groovy interpreter is unable to recognize that
the clos identifier is part of the method call. Groovy will report that it is unable
to find a method named meth with two parameters.

If meth represents a method with one parameter:

def meth(c) {...}

clos is a closure variable, and {...} a closure literal, the following observations
are made:

meth({...}) // OK
meth() {...} // OK
meth {...} // OK
meth(clos) // OK
meth() clos // ERROR: null pointer exception
meth clos // OK

In the fifth line, the call to meth is made but with no actual parameter. Within
the method body, the formal parameter will be initialized as null, and any usage
within the method issues the error shown. Somewhat confusingly, the final
example works.

H.2 closures and methods

We need to be absolutely clear about the following two Groovy constructs:

def double = {n -> return 2 * n}
def double(n) {return 2 * n}

The former defines a closure and the latter is a method definition. Section 7.6
discusses the notion of scope. Any closure reference will occur in some scope.
Hence, the following two closures could not appear together:

def divide = {x, y -> return x / y }
def divide = {x -> return 1 / x }

An error would report that the name divide has already been defined. In con-
trast, we know that Groovy supports method overloading, and that the following
is permissible:

394 A P PE N D I X H More on Closures

Appendix.qxd 6/11/06 7:59 PM Page 394

def multiply(x, y) {return x * y}
def multiply(x) {return 2 * x}

H.3 default parameters

Like methods, the formal parameters to a closure may be assigned default val-
ues. Here is a simple illustration:

def greeting = {message, name = “world” -> println “${message} ${name}” }

greeting(“Hello”, “world”)
greeting(“Hello”)

Both closure calls produce the output Hello world.

H.4 closures and scope

The effect of scope on closures was introduced in Section 9.1 and illustrated in
Examples 04 to 07, inclusive. Example 19 in Chapter 9 presented a selection
sort as a closure with local closures to support its implementation. A similar
arrangement is given in the bubbleSort closure shown in Example 01:

def bubbleSort = { list ->

def swap = {values, j, k ->
def temp = values[j]
values[j] = values[k]
values[k] = temp

}

def size = list.size()
def numberSorted = 0

while(numberSorted < size) {
for(index in 1..<(size -numberSorted)) {

if(list[index] < list[index -1])
swap(list, index, index -1)

}
numberSorted ++

}

return list
}

H.4 closures and scope 395

EXAMPLE 01
Bubblesort as a
closure

Appendix.qxd 6/11/06 7:59 PM Page 395

def numbers = [13, 14, 11, 12, 14]
println “Sorted numbers: ${bubbleSort(numbers)}”

◆

A variable cannot be defined twice in the same scope. Hence, we could not
define the local closure swap as shown in the following text, since its formal
parameter list would introduce a variable of the same name into the current
scope, the body of the bubbleSort closure.

def swap = {list, j, k ->
def temp = list[j]
list[j] = list[k]
list[k] = temp

}

These same scope rules would, however, permit us to define swap as shown in
the following text. This time, the behavior is described in terms of the two
parameters and the list variable is defined in the enclosing scope.

def swap = {j, k ->
def temp = list[j]
list[j] = list[k]
list[k] = temp

}

A final observation to make is that closures must consist of only statements. This
means that the local closure swap could not be replaced by a method definition.

H.5 recursive closures

Appendix G (Section G.1) introduced the recursive method, that is, a method
that calls or invokes itself. This is made possible because the body of a method
can reference itself. The ability to directly reference a closure in its definition is
not supported in Groovy. However, when we recognize that a closure is an
object of the class Closure, then the body of the closure can refer to itself with
the this keyword. A consequence of this is that recursive closures are possible,
as shown by Example 02, which reprograms factorial as a closure.

def factorial = { n ->
return (n == 0) ? 1 : n * this.call(n − 1)

}

println “Factorial(5): ${factorial(5)}”

396 A P PE N D I X H More on Closures

EXAMPLE 02
Recursive
factorial closure

Appendix.qxd 6/11/06 7:59 PM Page 396

The output is:

Factorial(5): 120

◆

Since the factorial closure cannot reference itself within the body of the closure,
this means that the following is illegal in Groovy:

def factorial = { n ->
return (n == 0) ? 1 : n * factorial(n − 1)

}

H.6 static typing

Closures have been defined with dynamic typing for both the parameters and
the return value. This feature renders closures more generic, as demonstrated in
Example 03. Here, the closure times returns the result of multiplying its two
parameters. Three calls are made to this closure with various actual parameter
types. Since the * operator is applicable in all the given situations, everything is
correct.

def times = {x, y ->
return x * y

}

println “times(3, 4): ${times(3, 4)}”
println “times(3.1, 4.2): ${times(3.1, 4.2)}”
println “times(‘Hello’, 4): ${times(‘Hello’, 4)}”

◆

The return type and the types for the formal parameters of a closure can also be
given statically. Such statically typed closures introduce an element of security
since they cannot be called without actual parameters of the required type or
subtype.

Example 04 repeats the previous example, but this time the closure times
has its parameters statically defined. The third call will generate an error, since
the actual parameters are of the incorrect types.

H.6 static typing 397

EXAMPLE 03
Dynamically typed
closures

Appendix.qxd 6/11/06 7:59 PM Page 397

def times = {Number x, Number y ->
return x * y

}

println “times(3, 4): ${times(3, 4)}”
println “times(3.1, 4.2): ${times(3.1, 4.2)}”
//println “times(‘Hello’, 4): ${times(‘Hello’, 4)}”

◆

H.7 actual parameter agreement

The actual parameters in a closure call must match exactly the number of for-
mal parameters given in the definition. Otherwise, Groovy will report incorrect
arguments. The final two closure calls in Example 05 report this error. The first
of these has too few actual parameters. The second has too many parameters.

def clos = {a, b, c ->
“clos(${a}, ${b}, ${c})”

}

clos(1, 2, 3)
//clos(1, 2) // missing closure
//clos(1, 2, 3, 4) // missing closure

◆

H.8 closures, collections,
and ranges

Lists, Maps, and Ranges include a number of methods that have a closure param-
eter, which makes it easy to iterate over the elements of the collection or range
and perform a task. The more common of these methods are tabulated in Table
H.1. The methods inject and reverseEach are applicable only to Lists and
Ranges. Again, the asterisk symbols inform us that these are augmented GDK
methods.

398 A P PE N D I X H More on Closures

EXAMPLE 04
Statically typed
closure

EXAMPLE 05
Missing closure

Appendix.qxd 6/11/06 7:59 PM Page 398

H.8 closures, collections, and ranges 399

TABLE H.1 Iterator methods

Name Signature/description

any * boolean any(Closure clos)
Iterate over every element of this collection, and check whether
the predicate denoted by clos is valid for at least one element.

collect * List collect(Closure clos)
Iterate through this collection and transform each element into
a new value using clos as the transformer, and then returning
a List of transformed values.

collect * List collect(Collection collection, Closure clos)
Iterate through this collection and transform each element into
a new value using clos as the transformer and then add it to
the collection, returning the resulting collection.

each * void each(Closure clos)
Iterate through this collection and apply the closure clos to
each element.

every * boolean every(Closure clos)
Iterate over every element of this collection, and check whether
the predicate denoted by clos is valid for all elements.

find * Object find(Closure clos)
Find the first element in this collection which conforms to the
predicate denoted by clos.

findAll * List findAll(Closure clos)
Find all the elements in this collection that match the predi-
cate denoted by clos.

findIndexOf * int findIndexOf(Closure clos)
Iterate over every element of this collection and return the
index of the first element that matches the condition specified
by the closure clos.

inject * Object inject(Object value, Closure clos)
Iterate through this collection, and pass the initial value to the
closure clos along with the first iterated element, then pass this
result into the next iteration.

reverseEach * void reverseEach(Closure clos)
Iterate through this collection in the reverse order and apply
the closure clos to each element.

sort * List sort(Closure clos)
Sort this collection, using the closure clos as comparator.

Appendix.qxd 6/11/06 7:59 PM Page 399

H.9 return statement

We need to be aware of the semantics of the return statement when used within
a closure body. For example, to determine whether an item is a member of a
List, we would normally use method find. However, consider the two variations
of isMember as shown in Example 06. The first version, isMemberA, uses a sim-
ple for loop to iterate across all the elements of the List. If a match is found,
the method exits immediately, returning the true value. If the loop is exhausted
and no match is found, then the method returns false. This implementation
behaves correctly, as shown by the first two print statements.

def isMemberA(item, list) {
def size = list.size()
for(index in 0..<size) {

if(list[index] == item)
return true

}
return false

}

def isMemberB(item, list) {
list.each { element ->

//println “searching: ${element}”
if(element == item)

return true
}
return false

}

def numbers = [11, 12, 13, 14]

println “isMemberA(15, numbers): ${isMemberA(15, numbers)}” // OK: false
println “isMemberA(13, numbers): ${isMemberA(13, numbers)}” // OK: true

println “isMemberB(15, numbers): ${isMemberB(15, numbers)}” // OK: false
println “isMemberB(13, numbers): ${isMemberB(13, numbers)}” // ERROR: false

◆

We might consider being more Groovy-like and using the each iterator
method with a closure to perform the searching. This implementation is given
in the method isMemberB. However, as shown by the final two print statements,
this version always returns false. The explanation for this lies in understanding
how method each is implemented. As shown in the following text, an iterator is
used to retrieve references to the objects in the list and to call the closure clos,
passing each obj as actual parameter.

400 A P PE N D I X H More on Closures

EXAMPLE 06
Return in a
closure

Appendix.qxd 6/11/06 7:59 PM Page 400

def each(list, clos) {
def iter = list.iterator()
while(iter.hasNext()) {

def obj = iter.next()
clos.call(obj)

}
}

In our example, the actual closure contains the return statement. This makes a
return from the closure call and the while loop continues with the next object
in the list. We can see this effect if we uncomment the print statement in
method isMemberB. We discover that every element is processed, the loop is
completed, and the method isMemberB finishes by always returning false.

H.10 testing

It is always worthwhile conducting a few simple tests, even if they just confirm
that our understanding of a particular aspect of Groovy is correct. The follow-
ing GroovyTestCase is an example of these kinds of tests. Others can be easily
added. Here, we confirm our understanding of closures and collections.

H.10 testing 401

import groovy.util.*

import java.util.regex.*

class GroovyIteratorTests extends GroovyTestCase {

void setUp() {
numbers = [11, 12, 13, 14]
staffTelephones = [‘Ken’ : 2745, ‘John’ : 2746, ‘Sally’ : 2742]
century = 2000..2099

}

// method any
void testAny() {

assertTrue(‘One even value’, numbers.any {element -> return (element % 2 == 0)})
assertTrue(‘Ken is staff member’, staffTelephones.any {entry -> return (entry.key == ‘Ken’)})
assertTrue(‘This century all correct’, century.any {element -> return

(element >= 2000 && element < 2100)})
}

void testCollect() {
assertTrue(‘Doubled numbers’,

[22, 24, 26, 28] == numbers.collect {element -> return 2 * element})

Appendix.qxd 6/11/06 7:59 PM Page 401

assertTrue(‘Incremented telephone number’,
[2746, 2747, 2743].containsAll(staffTelephones.collect {entry ->

return ++ entry.value
}))
assertTrue(‘Next century’,

(2100..2199).containsAll(century.collect {element -> return 100 + element}))
}

void testEach() {
def numbersResult = “”
numbers.each {element -> numbersResult = numbersResult + “+” + element}
assertTrue(‘Numbers +’, Pattern.compile (‘(\\+[0-9][0-9])*’).matcher(numbersResult).find())

def staffTelephonesResult = “”
staffTelephones.each {entry ->

staffTelephonesResult = staffTelephonesResult + “+” + entry.key
}

assertTrue(‘Names +’,
Pattern.compile (‘(\\+[A-Z][a-z]*)*’).matcher(staffTelephonesResult).find())

def centuryResult = “”
century.each {element -> centuryResult = centuryResult + “+” + element}
assertTrue(‘Numbers +’, Pattern.compile (‘(\\+[0-9][0-9])*’).matcher(centuryResult).find())

}

void testEvery() {
assertTrue(‘Every number 11..14’,

numbers.every {element -> return (element >= 11 && element <= 14)})
assertTrue(‘’, staffTelephones.every {entry ->

return [2745, 2746, 2742].contains(entry.value)})
assertTrue(‘This century’,

century.every {element -> return (element >= 2000 && element < 2100)})
}

void testFind() {
assertTrue(‘First is 11’, 11 == numbers.find {element -> return element > 10})
assertTrue(‘Ken at 2745’,

2745 == (staffTelephones.find {entry -> return (entry.key == ‘Ken’)}).value)
assertTrue(‘Last year’, 2099 == century.find {element -> return (element == 2099)})

}

void testFindAll() {
assertTrue(‘Last two’, [13, 14].containsAll (numbers.findAll {element ->

return (element > 12)}))
assertTrue(‘Ken at 2745’,

1 == (staffTelephones.findAll {entry -> return (entry.key == ‘Ken’)}).size())

402 A P PE N D I X H More on Closures

Appendix.qxd 6/11/06 7:59 PM Page 402

assertTrue(‘’, 50 == (century.findAll {element -> return (element >= 2050)}).size())
}

void testFinIndexOf() {
assertTrue(‘Position of 13’, 2 == numbers.findIndexOf {element -> return (element > 12)})
assertTrue(‘Map indexing’,

staffTelephones.size() > staffTelephones.findIndexOf {entry -> return
(entry.key == ‘Ken’)})

assertTrue(‘’, 99 == century.findIndexOf {element -> return (element == 2099)})
}

void testInject() {
assertTrue(‘Adding numbers’,

50 == numbers.inject(0) {previous, element -> return previous + element})
assertTrue(‘All in century’,

century.inject(true) {previous, element ->
return (previous && (2000 <= element && element <= 2099))

})
}

void testReverseEach() {
def numbersResult = “”
numbers.reverseEach {element -> numbersResult = numbersResult + “+” + element}
assertTrue(‘Numbers +’, Pattern.compile (‘(\\+[0-9][0-9])*’).matcher(numbersResult).find())

def centuryResult = “”
century.reverseEach {element -> centuryResult = centuryResult + “+” + element}
assertTrue(‘Numbers +’, Pattern.compile (‘(\\+[0-9][0-9])*’).matcher(centuryResult).find())

}

// ------properties ----------------

def numbers
def staffTelephones
def century

}

H.10 testing 403

Appendix.qxd 6/11/06 7:59 PM Page 403

A P P E N D I X I
more on
classes

This appendix considers a number of aspects of classes that we chose to defer
when first introducing them in Chapter 12. We consider the visibility of prop-
erties and their getter and setter methods and we demonstrate how certain
method names are reserved to act as method definitions for the standard oper-
ators. We also discuss the support offered by Groovy for navigating through a
network of objects.

I.1 properties and vis ibility

We have seen how properties can significantly reduce the size of code when
defining a class. Groovy seeks to unify the notion of instance fields and meth-
ods through the use of properties. Further, we also know that (public) proper-
ties in a class give rise to public getters and setters automatically generated for
the class. They, in turn, provide the necessary support whereby an instance of a
class can be created using named parameters without the need to include a para-
meterized constructor in the class.

All of these features can be seen when we revisit the Account class first intro-
duced in Chapter 12. It is repeated in Example 01. Here, we create an instance,
change its state, and access its state to reveal its values. All this is provided by
the auto-generated methods.

404

Appendix.qxd 6/11/06 7:59 PM Page 404

class Account {

def credit(amount) {
balance += amount

}

def debit(amount) { // only if there are sufficient funds
if(balance >= amount)

balance -= amount
}

// -----properties ------------------

def number // account number
def balance // current balance

}

// Create an instance
def acc = new Account(number : ‘ABC123’, balance : 1200)

// Change state with the automatic setters
acc.number = ‘DEF456’
acc.balance = 1500

// Now use the automatic getters
println “Account: ${acc.number}; balance: ${acc.balance}”

Running this script produces the output:

Account: DEF456; balance: 1500

and demonstrates that the Account object is correctly initialized.

◆

The instance fields of a class can be tagged as public, protected, or private.
As its name suggests, a public instance field is accessible to client code. Equally,
a private instance field can only be referenced in the class in which it is defined.
A protected instance field is accessible to the class in which it is defined and to
any subclass; otherwise, it is private to client code.

These visibility qualifiers are used to introduce some access control into our
code. Making instance fields public exposes them to direct change from client
code. When selecting the visibility of the features of a class, we generally aim to
conceal the implementation details and only publicize features that support the
abstraction represented by the class. Generally, this means that instance fields
are given private or protected visibility and operations are public if they charac-
terize objects of the class.

I.1 properties and vis ibility 405

EXAMPLE 01
Account class

Appendix.qxd 6/11/06 7:59 PM Page 405

If the instance fields of the Account class were given protected access, so too
is the setter method that is automatically generated. This means that the last
illustration now no longer executes as previously shown.

class Account {

// ...

def display() {
println “Account number: ${number} balance: ${balance}”

}

// ------properties --------------------

protected number // account number
protected balance // current balance

}

// Create an instance
// Since the setters are protected then the object instance
// is not correctly initialized

def acc = new Account(number : ‘ABC123’, balance : 1200)
acc.display()

// Change things with the automatic setters
//acc.number = ‘DEF456’ // ERROR: Cannot access protected member
//acc.balance = 1500 // ERROR: Cannot access protected member

If we execute the code, the output produced is:

Account number: null balance: null

◆

We have created an Account object, but because the getters and setters for the
two properties are protected, the object is not correctly initialized. By default,
uninitialized properties are given the null value. Hence, the output produced.

Note how in the listing the instance fields are no longer accessible. If we
uncomment the two statements to change the number and balance of the
account, the Groovy environment reports the error message Cannot access pro-
tected member.

Private or protected instance fields can be supported by providing explicit
getter and setter methods. If only a (public) getter is specified, then effectively
the property is read-only. If only a setter is defined, the property is said to be
write-only. Together, we get the services described by Example 01.

406 A P PE N D I X I More on Classes

EXAMPLE 02
Protected
properties

Appendix.qxd 6/11/06 7:59 PM Page 406

In Example 03, we show two private instance fields. The balance instance
field has been provided with a getter method that can be used to provide read-
only access to it. However, as the code shows, the use of the accessor still pro-
duces a null value. This is not a consequence of the getter but the absence of
public setters that work jointly with the default constructor when the object is
created. We see this when running the script:

Account balance: null

class Account {

def getBalance() {
return balance

}

// ...

// ------properties -------------------

private number // account number
private balance // current balance

}

// Create an instance
// Since the setters are protected then the object instance
// is not correctly initialized

def acc = new Account(number : ‘ABC123’, balance : 1200)

// However, the balance property is read-only through the public getter
// But this produces the output:
// Account balance: null

println “Account balance: ${acc.getBalance()}”
println “Account balance: ${acc.balance}”

◆

A resolution can be provided in one of two ways. First, we can include a
parameterized constructor for the Account class. This will properly initialize the
private instance fields and the accessor will extract the correct value. This solu-
tion is shown in Example 04.

I.1 properties and vis ibility 407

EXAMPLE 03
Private properties

Appendix.qxd 6/11/06 7:59 PM Page 407

class Account {

def Account(number, balance) {
this.number = number
this.balance = balance

}

def getBalance() {
return balance

}

// ...

// ------properties ----------------

private number // account number
private balance // current balance

}
// Create an instance

def acc = new Account(‘ABC123’, 1200)

// However, the balance property is read-only through the following
println “Account balance: ${acc.balance}”

Now, the output is:

Account balance: 1200

◆

Example 05 shows an alternative solution. Here, we provide two explicit
setters. This program delivers the same output as that in Example 04.

class Account {

def getBalance() {
return balance

}

def setNumber(number) {
this.number = number

}

def setBalance(balance) {
this.balance = balance

}

408 A P PE N D I X I More on Classes

EXAMPLE 04
Parameterized
constructor

EXAMPLE 05
Public setter
methods

Appendix.qxd 6/11/06 7:59 PM Page 408

// ...

// ------properties --------------------

private number // account number
private balance // current balance

}

// Create an instance
def acc = new Account(number : ‘ABC123’, balance : 1200)

// However, the balance property is read-only through the public getter
println “Account balance: ${acc.balance}”

◆

I.2 object navigation

Unifying properties with instance fields and methods offers an additional fea-
ture. Object-oriented applications are characterized by a network of interacting
objects. The object instances form relationships, and method execution propa-
gates through the system of objects. The relations established between objects
give rise to a graph-like structure. This structure usually has to be traversed to
find the required objects and to invoke the required methods.

A graph of objects can be traversed with a syntactic expression similar to
XPath (see http://www.w3.org/TR/xpath). The dot-notation is used to express
this traversal. As an example, consider a Bank organized as a set of Customers,
each having a number of Accounts (as shown in Figure I.1). We might, for exam-
ple, wish to produce a report on all the Accounts belonging to a particular
Customer. Clearly, we need to reference all the Account objects that are associ-
ated with the particular Customer that is registered with the Bank. The code to
achieve this is:

A danger of using this form of navigation is that we may experience a
NullPointerException when attempting to traverse through a null value. To
avoid this, safe navigation is provided by the ?. operator. The preceding may
then be written as:

customers[customerNumber]?.accounts.each { number, account -> println “ ${account}” }

customers[customerNumber].accounts.each { number, account -> println “ ${account}” }

I.2 object navigation 409

Appendix.qxd 6/11/06 7:59 PM Page 409

The customerNumber is used to index the Map of Customer objects and obtain
the required Customer. The property accounts for this Customer object refer-
ences all the Accounts for this Customer. The method each provides iteration
across each Account object, and the closure is the action to perform a print of
each.

An object diagram can prove a useful analysis in advance of developing the
class diagram. An object diagram shows the network of objects at some point in
the execution of the system. Optionally, it can show possible state information
for individual objects. Figure I.2 is one such object diagram. Here, we show one
Bank object, two Customer objects, and three Account objects. The diagram also
reveals that the first Customer has one Account while the second Customer has
opened two Accounts.

Example 06 presents the necessary detail. Notice how object navigation is
used in the three display methods.

class Account {

// ...

String toString() {
return “Account: ${number} ${balance}”

}

// ------properties -----------------

defnumber // account number
defbalance // current balance

}

410 A P PE N D I X I More on Classes

FIGURE I.1 Bank model.

CustomercBankc
- customers

*
Accountc

- accounts

*

bk : Bank

cus1 : Customer

cus2 : Customer

acc1 : Account

acc2 : Account

acc3 : Account

FIGURE I.2 Object diagram.

EXAMPLE 06
Object navigation

Appendix.qxd 6/11/06 7:59 PM Page 410

class Customer {

def openAccount(number, balance) {
def acc = new Account(number : number, balance : balance)
accounts[number] = acc

}

String toString() {
return “Customer: ${number} ${name}”

}

// ------properties --------------------

def number // account number
def name // current balance
def accounts = [:]

}

class Bank {
def registerCustomer(cust) {

customers[cust.number] = cust
}

String toString() {
return “Bank: ${name}”

}

// -------properties -----------------

def name // current balance
def customers = [:]

}

def displayAllAccounts(bank) {
println “Bank: ${bank.name} (all accounts)”
println ‘============================’

bank?.customers.each { customerNumber, customer ->
println customer
customer?.accounts.each { accountNumber, account -> println “ ${account}” }

}
println()

}

def displayAllAccountsForCustomer(bank, customerNumber) {
println “Bank: ${bank.name} (customer accounts)”
println ‘=================================’

I.2 object navigation 411

Appendix.qxd 6/11/06 7:59 PM Page 411

def customer = bank?.customers[customerNumber]
println customer
customer?.accounts.each { number, account -> println “ ${account}” }
println()

}
def displayAccountForCustomer(bank, customerNumber, accountNumber) {

println “Bank: ${bank.name} (customer account)”
println ‘=================================’

def customer = bank?.customers[customerNumber]
def account = customer?.accounts[accountNumber]
println “ ${account}”
println()

}

// create a Bank...
def bk = new Bank(name : ‘Barclay’)

// ...and some customers with accounts
def cust1 = new Customer(number : 111, name : ‘Savage’)
cust1.openAccount(1111, 1200)
cust1.openAccount(1112, 400)
cust1.openAccount(1113, 800)

def cust2 = new Customer(number : 222, name : ‘Kennedy’)
cust2.openAccount(2221, 1000)
cust2.openAccount(2222, 1400)

// now register customers with bank
bk.registerCustomer(cust1)
bk.registerCustomer(cust2)

// print some reports
displayAllAccounts(bk)
displayAllAccountsForCustomer(bk, 111)
displayAccountForCustomer(bk, 222, 2222)

When we execute this example, we get the output:

Bank: Barclay (all accounts)
============================
Customer: 111 Savage

Account: 1111 1200
Account: 1112 400
Account: 1113 800

Customer: 222 Kennedy
Account: 2221 1000
Account: 2222 1400

412 A P PE N D I X I More on Classes

Appendix.qxd 6/11/06 7:59 PM Page 412

Bank: Barclay (customer accounts)
=================================
Customer: 111 Savage

Account: 1111 1200
Account: 1112 400
Account: 1113 800

Bank: Barclay (customer account)
=================================

Account: 2222 1400

◆

I.3 static members

Instantiating and initializing an object should be a familiar process. So, too, is the
notion of an object’s having a set of properties; their values define the object’s
state. Another possibility is for properties to be class data, and to act as a value
shared by all object instances. Such a class member is declared as static and is
accessed in conjunction with the class name. Example 07 has the (public and
final) static member ORIGIN defined in the Point class. The final keyword is
used to specify that the value of ORIGIN cannot be changed within the program.

class Point {

def move(deltaX, deltaY) {
x += deltaX
y += deltaY

}

// ------properties -----------------

def x
def y

public final static ORIGIN = new Point(x : 0.0, y : 0.0)
}

def p = new Point(x : 2.0, y : 3.0)
p.move(1.0, 1.0)
println “p: ${p.x}, ${p.y}”

println “Origin: ${Point.ORIGIN.x}, ${Point.ORIGIN.y}”

◆

I.3 static members 413

EXAMPLE 07
Static data member

Appendix.qxd 6/11/06 7:59 PM Page 413

Observe how the ORIGIN member is referenced in the final print statement. It
has to be qualified with the name of the class in which it is defined.

The static qualifier can also be associated with class methods. Again, such
methods do not belong to a particular object instance. Their behavior is fully
described by their input parameters and does not involve state information. An
example of this is the mathematical methods, such as sqrt, defined in the JDK
Math class:

public class Math {

public static double sqrt(double x) { ... }
// ... others

}

Example 08 illustrates using this method in the definition of the method
getLength in class LineSegment. Again, the class name qualifies the name of the
method.

class Point {
// ...

}

class LineSegment {

def move(deltaX, deltaY) {
start.move(deltaX, deltaY)
end.move(deltaX, deltaY)

}

def getLength() {
def xDiff = start.x − end.x
def yDiff = start.y − end.y
return Math.sqrt(xDiff * xDiff + yDiff * yDiff)

}

// -------properties ------------------

def start
def end

}

def p = new Point(x : 3.0, y : 4.0)
def q = new Point(x : 4.0, y : 5.0)

def line = new LineSegment(start : p, end : q)
println “Line length: ${line.getLength()}”

◆

414 A P PE N D I X I More on Classes

EXAMPLE 08
static methods

Appendix.qxd 6/11/06 7:59 PM Page 414

I.4 operator overloading

Chapter 2 revealed that everything in Groovy is an object. For example, the inte-
ger literal 123 is actually an instance of the class Integer. Further, we saw that
when used in an expression such as 123 + 456, this was actually a syntactic sweet-
ener so that we can use conventional algebraic notation. In fact, this expression
is a convenience for the method call 123.plus(456). The first operand is the
recipient while the second operand is the parameter passed to the method.

Groovy supports operator overloading for a predefined set of operators. Each
operator is mapped to a particular method name. As has been noted, the + oper-
ator is mapped to the method named plus. By implementing these methods in
our own classes, we can overload the corresponding operators to act with objects
of our classes.

We demonstrate this with the class Vector (see Example 09) used to repre-
sent a one-dimensional array of numeric values. Method plus implements vec-
tor addition and method multiply implements vector multiplication, as
described by:

[a1, a2, a3, ...] + [b1, b2, b3, ...] = [a1 + b1, a2 + b2, a3 + b3, ...]
[a1, a2, a3, ...] * [b1, b2, b3, ...] = a1 * b1 + a2 * b2 + a3 * b3 + ...

where [...] represents a Vector object.

class Vector {

def plus(vec) {
def res = []
def size = this.values.size()
def vecSize = vec.values.size()
if(size == vecSize) {

for(index in 0..<size) {
res << (values[index] + vec.values[index])

}
}

return res
}

def multiply(vec) {
def prod = 0.0
def size = this.values.size()
def vecSize = vec.values.size()
if(size == vecSize) {

for(index in 0..<size) {
prod += values[index] * vec.values[index]

}
}

I.4 operator overloading 415

EXAMPLE 09
Operator
overloading

Appendix.qxd 6/11/06 7:59 PM Page 415

return prod
}

// ------properties -------------------

def values = []
}

def vec1 = new Vector(values : [1.0, 2.0, 3.0, 4.0, 5.0])
def vec2 = new Vector(values : [6.0, 7.0, 8.0, 9.0, 10.0])

println “plus: ${vec1 + vec2}”
println “multiply: ${vec1 * vec2}”

◆

Note the use of the arithmetic operators applied to Vector objects in the
final print statements. When we run this script, the output is:

plus: [7.0, 9.0, 11.0, 13.0, 15.0]
multiply: 130.00

The operators that may be overloaded are tabulated in Table I.1.

416 A P PE N D I X I More on Classes

TABLE I.1 Overloaded Operators

Operator Method Description

a + b a.plus(b) Addition
a − b a.minus(b) Subtraction
a * b a.multiply(b) Multiplication
a / b a.divide(b) Division
a++ ++a a.increment(b) Pre- and post-increment
a– – – –a a.decrement(b) Pre- and post-decrement
a === b a == b Equality, i.e., same object
a <=> b a.compareTo(b) Comparison: −1 if a < b; 0 if

a == b; +1 if a >b
a == b a.equals(b) Equality
a != b ! a.equals(b) Inequality
a < b a.compareTo(b) < 0 Less than
a <= b a.compareTo(b) <= 0 Less than or equal
a > b a.compareTo(b) > 0 Greater than
a >= b a.compareTo(b) >= 0 Greater than or equal
a[b] a.get(b) Indexed accessor
a[b] = c a.put(b, c) Indexed assignment

Appendix.qxd 6/11/06 7:59 PM Page 416

I.5 the invokemethod

Appendix B describes how Groovy scripts are implemented as a class. For exam-
ple, the simple script println ‘hello world’ becomes this class (in the file
Hello.java):

public class Hello extends Script {

public static void main(String[] args) {
Hello h = new Hello();
h.run(args);

}

public void run(String[] args) {
this.println(‘hello, world’);

}
}

In fact, when a method is called as in:

this.println(‘hello, world’)

the actual invocation is implemented with the method invokeMethod inherited
from the Script class. Hence, we actually have:

this.invokeMethod(‘println’, [‘hello, world’] as Object[])

The method to be called is given as a String argument, and the method
parameters are provided by an Object[]. Example 10 illustrates with an Account
object which, after initialization, is credited with 200 and debited with 900.
This time, the methods credit and debit are invoked through the inherited
invokeMethod.

class Account {

// ...

String toString() {
return “Account: ${number} with balance: ${balance}”

}

I.5 the invokemethod 417

EXAMPLE 10
Method invocation

Appendix.qxd 6/11/06 7:59 PM Page 417

// ------properties ------------------

def number
def balance

}

def acc = new Account(number : ‘AAA111’, balance : 1200)

acc.invokeMethod(‘credit’, [200] as Object[])
acc.invokeMethod(‘debit’, [900] as Object[])

println “acc: ${acc}”

◆

If we redefine the invokeMethod in our Account class, we can monitor how
methods called on an Account object ultimately execute invokeMethod. In
Example 11, we create an instance of the Account class, then invoke
pseudomethods credit and debit.

class Account {

public Object invokeMethod(String name, Object params) {
println “invokeMethod(${name}, ...)”
return null

}

String toString() {
return “Account: ${number} with balance: ${balance}”

}

// ------properties --------------------

def number
def balance

}

def acc = new Account(number : ‘AAA111’, balance : 1200)

acc.credit(200)
acc.debit(900)

println “acc: ${acc}”

418 A P PE N D I X I More on Classes

EXAMPLE 11
Redefined
invokeMethod

Appendix.qxd 6/11/06 7:59 PM Page 418

When we run this code, the output is:

invokeMethod(credit, ...)
invokeMethod(debit, ...)
acc: Account: AAA111 with balance: 1200

where we see how the credit and debit method calls are handled.

◆

This scheme can be used as the basis for the meta-object protocol
(see http://www-128.ibm.com/developerworks/java/library/j-pg09205/ and
http://www2.parc.com/csl/groups/sda/projects/mops/default.html). This
protocol enables an object to make specific choices that affect its own state or
behavior when methods are passed to it at runtime. An illustration of this is
shown in the Ant builder section of Appendix K.

I.6 exercises 419

I.6 exercises

1. Repeat the seven exercises in Chapter 12 (Section 12.3), this time giving
the properties private visibility.

2. Construct a Matrix class to represent a two-dimensional array of numeric
values. Include methods plus and multiply to overload the arithmetic
operators for objects of this class. The definitions are:

[[a00, a01, a02, ...], + [[b00, b01, b02, ...], = [[a00 + b00, a01 + b01, ...],
[a10, a11, a12, ...], [b10, b11, b12, ...], [a10 + b10, a11 + b11,...],
...
]]]

and:

[[a00, a01, a02, ...], * [[b00, b01, b02, ...], = [[a00 * b00 + a01 + b10 + ..., a00 * b01 + a01 * b11 + ...],
[a10, a11, a12, ...], [b10, b11, b12, ...], [a10 * b00 + a11 * b10+ ..., a10 * b01 + a10 * b11 + ...],
...
]]]

Appendix.qxd 6/11/06 7:59 PM Page 419

A P P E N D I X J
advanced
closures

Chapter 9 introduced closures as parametric code blocks that can be referenced
and passed as method parameters. An important example of the latter was clo-
sures given as parameters to methods that iterated through collections. We saw
how methods such as each and findAll can be used to describe some processing
to be performed on all the elements of a collection.

In this appendix, we further explore closures by observing that they can also
be returned from methods or from other closures. Closures as return values
from other closures provide a very powerful framework that can be applied to a
variety of problems. For example, we may wish to define the constraints that
apply to individual objects, the relationships that must exist between objects or
the rules that might apply to certain categories of objects. This is readily
achieved with closures.

Consider that an Account has a number, balance, and overdraft limit as
properties. We might insist that the overdraft limit be a positive value, for exam-
ple, an overdraft of 500 pounds. Further, this would determine that the balance
could be any value that is greater or equal to the negative value −500 pounds,
that is, a balance that is permitted to be a restricted negative value. We will see
how closures can be used to express these constraints.

Equally, consider a supermarket that uses special offers to attract new cus-
tomers and maintain its existing customer base. In one week, there might be a
three-for-two offer on breakfast cereals, and in another week, the promotion
might be changed to buy-one-get-one-free on cosmetics. In such an ever-changing
environment, we need a means of defining these “business rules” and a
means to flexibly combine them. We show how closures can provide this flexi-
bility.

420

Appendix.qxd 6/11/06 7:59 PM Page 420

The ideas presented here contribute to the multiparadigm approach that is
a feature of Groovy. In this appendix, we demonstrate how ideas from func-
tional programming (Thompson, 1999) can be both realized and exploited in
Groovy. The functional programming paradigm exploits polymorphism, com-
position, and computation patterns through higher-order functions. We shall
see how we may apply these ideas successfully in Groovy.

J.1 s imple closures

We have previously described a closure as a code block. The closure can be para-
meterized to make it more generally useful, it can be referenced, it can be passed
as a method parameter, and it can be invoked with the call message. Example
01 includes a simple parameterized closure entitled multiply that finds the
product of two numeric parameters.

def multiply = { x, y -> return x * y }

println “multiply(3, 4): ${multiply.call(3, 4)}” // explicit call
println “multiply(3.4, 5.6): ${multiply(3.4, 5.6)}” // implicit call

Executing this program demonstrates the execution of the closures and pro-
duces the output:

multiply(3, 4): 12
multiply(3.4, 5.6): 19.04

◆

Chapter 9 noted how state may be referenced by closures. In Example 02, we
have a multiplier variable that is in scope when the multiply closure is defined.
The closure computes the product of its single parameter and the multiplier.

J.1 s imple closures 421

EXAMPLE 01
Simple closure

EXAMPLE 02
Scoping and
closures

def multiplier = 2
def multiply = { x -> return x * multiplier } // second operand from enclosing scope

println “multiply(3): ${multiply.call(3)}”
println “multiply(5.6): ${multiply(5.6)}”

// Now do it again but with a different multiplier value
multiplier = 3

Appendix.qxd 6/11/06 7:59 PM Page 421

println “multiply(3): ${multiply.call(3)}”
println “multiply(5.6): ${multiply(5.6)}”

When we run this code, we get:

multiply(3): 6
multiply(5.6): 11.2
multiply(3): 9
multiply(5.6): 16.8

This time, we see how variables in scope at the point of definition of a closure
can be accessed from within the closure code.

◆

The next illustration demonstrates how a closure can return another closure
as its value. In Example 03, the closure arithmetic selects from one of four clo-
sures as its return value, based on the String parameter. The program shows
how the returned closure can then be invoked as normal.

// Various closures
def add = { x, y -> return x + y }
def subtract = { x, y -> return x – y }
def multiply = { x, y -> return x * y }
def divide = { x, y -> return x / y }

// Select a closure
def arithmetic = { arith ->

switch(arith) {
case ‘ADD’: return add
case ‘SUBTRACT’: return subtract
case ‘MULTIPLY’: return multiply
case ‘DIVIDE’: return divide
default: return add

}
}

// Get one...
def addOperation = arithmetic(‘ADD’)
def mulOperation = arithmetic(‘MULTIPLY’)

// ...and use it
println “addOperation(3, 4): ${addOperation(3, 4)}”
println “mulOperation(3, 4): ${mulOperation(3, 4)}”

422 A P PE N D I X J Advanced Closures

EXAMPLE 03
Closure return
value

Appendix.qxd 6/11/06 7:59 PM Page 422

// Get one and use it
println “arithmetic(‘MULTIPLY’)(3, 4): ${arithmetic.call(‘MULTIPLY’).call(3, 4)}”

The output from this program is given in the following text. It demonstrates
that the arithmetic closure returns a closure as its value, which can then be
called like any other closure.

addOperation(3, 4): 7
mulOperation(3, 4): 12
arithmetic(‘MULTIPLY’)(3, 4): 12

◆

J.2 partial application

In Example 02, the multiply closure computes the product of its single parame-
ter and the enclosing variable multiplier. If we now make the multiplier a
parameter to a closure that returns the multiply closure pre-prepared to multi-
ply its own parameter with that multiplier, then we have an example of a par-
tial application of a closure. This is an example of a general phenomenon, namely,
a closure with two parameters (see multiply in Example 04) that can be recast
and partially applied to one parameter. This gives a powerful way of forming and,
as we shall see later, combining closures. The code is shown as Example 04.

def multiply = { x, y -> return x * y }

// Now some partial applications...
// ...both are closures

def triple = multiply.curry(3)
def quadruple = multiply.curry(4)

// Both are partial applications of multiply
println “triple(4): ${triple(4)}”
println “quadruple(5): ${quadruple(5)}”

Running the program produces the output:

triple(4): 12
quadruple(5): 20

◆

J.2 partial application 423

EXAMPLE 04
Partial
application

Appendix.qxd 6/11/06 7:59 PM Page 423

Observe how the expression multiply.curry(3) denotes a closure that mul-
tiplies its single parameter by 3. The resulting closure can then be invoked with
a single parameter as in triple(4). This partial application of a closure is called
currying, after the mathematician Haskell Curry. Effectively, the closure triple
has the definition:

def triple = { y -> return 3 * y }

with the first parameter removed and all its occurrences replaced with the value 3.
Arithmetic addition and multiplication are described as commutative oper-

ations. This means that A + B = B + A and A * B = B * A. This is not the case, how-
ever, with subtraction and division. We can achieve something similar to the
multiply closure if we recognize that (in the case of subtraction) we might be
setting the value to be subtracted or the value from which to subtract. This is
shown in Example 05.

def rSubtract = { y, x -> return x – y }
def lSubtract = { x, y -> return x – y }

def subtract10 = rSubtract.curry(10)
def subtractFrom20 = lSubtract.curry(20)

println “subtract10(22): ${subtract10(22)}”
println “subtractFrom20(14): ${subtractFrom20(14)}”

The output from this program is:

subtract10(22): 12
subtractFrom20(14): 6

◆

One important observation about currying closures is that the number of actual
parameters provided to the curry method must not exceed the actual number
of parameters required by the closure. If the closure has, say, three parameters,
then the curry method can be called with none, one, two, or three actual
parameters.

One of the advantages of partial application of closures will be demon-
strated in the next section. Partial application can be considered as a form of
simplification whereby a complex task is partitioned into separate subtasks. In
the partial application of the multiply closure (see Example 04), instead of
defining the multiplication of two values, we have separated it so that we can

424 A P PE N D I X J Advanced Closures

EXAMPLE 05
Handling
commutativity

Appendix.qxd 6/11/06 7:59 PM Page 424

define any number of multiplying closures, such as triple or quadruple. With
these simpler tasks, we can now consider how they might be combined in use-
ful ways.

J.3 composition

One way to structure a program is to perform a number of tasks in sequence.
Normally, each part is designed and implemented separately. Here, we might
consider that a closure represents some simple task to be performed. Combining
these using the notion of composition can produce complex tasks that are easy to
construct. Further, by recombination in different ways, we can readily create
new tasks as might be required by the supermarket illustration discussed in the
introduction to this appendix.

The composition closure is demonstrated in Example 06. Its two parame-
ters f and g represent closures and will apply closure g to x, as in g(x), and then
apply the closure f to the result as in f(g(x)).

// Composition closure
def composition = { f, g, x -> return f(g(x)) }

// Multiply closure and two instances
def multiply = { x, y -> return x * y }

def triple = multiply.curry(3)
def quadruple = multiply.curry(4)

// Construct a new closure by combining two others
def twelveTimes = composition.curry(triple, quadruple)

println “twelveTimes(12): ${twelveTimes(12)}”

The output is:

twelveTimes(12): 144

◆

The closure triple is defined as one that takes a single parameter and multiplies
it by 3. The closure quadruple is defined as one that takes a single parameter and
multiplies it by 4. The closure twelveTimes is defined as the composition of the
closure triple and the closure quadruple. Effectively, this closure twelveTimes
multiplies its parameter by 4 (quadruples it), and then multiplies the result by
3 (triples it) as defined by the composition closure.

J.3 composition 425

EXAMPLE 06
Closure
composition

Appendix.qxd 6/11/06 7:59 PM Page 425

This same composition can be used anywhere, including applying it to the
elements of a collection. Example 07 shows this in action.

// Composition closure
def composition = {f, g, x -> return f(g(x))}

// Multiply closure and two instances
def multiply = {x, y -> return x * y}

def triple = multiply.curry(3)
def quadruple = multiply.curry(4)

// Construct a new closure by combining two others
def twelveTimes = composition.curry(triple, quadruple)

def table = [1, 2, 3, 4].collect {element -> return twelveTimes(element)}

println “table: ${table}”

The code applies the twelveTimes closure to each element in the list [1, 2, 3,
4], producing a new list, as shown by the output:

table: [12, 24, 36, 48]

◆

J.4 patterns of computation

In this section, we explore a mechanism by which we can express closures that
embody a pattern of computation. One example of this is where we transform
every element of a List in some way. Of course, Groovy already has the collect
method for Lists and we use this to simplify implementing our pattern. This
transformation is usually given the name map. Its behavior is described by
Figure J.1. On the left we show some function (closure) f, which, when applied
to a single argument (represented by the circle), delivers a value (the square).
Now, if we have a List of values of type circle, map f list delivers a List of val-
ues of type square produced by applying f to the originals.

In Example 08, we present the map closure. The partial application of map
will return a closure that will operate on a single list. Currying the map closure
is performed with a closure that is to be applied to each element of a list.

426 A P PE N D I X J Advanced Closures

EXAMPLE 07
Compositions and
collections

Appendix.qxd 6/11/06 7:59 PM Page 426

// map closure
def map = {clos, list -> return list.collect(clos)}

// composition closure
def composition = {f, g, x -> return f(g(x))}

// Multiply closure and two instances
def multiply = {x, y -> return x * y}

def triple = multiply.curry(3)
def quadruple = multiply.curry(4)

// closure to triple the elements in a list
def tripleAll = map.curry(triple)

def table = tripleAll([1, 2, 3, 4])

println “table: ${table}”

First, observe the map closure. It expects two parameters, namely, the closure and
the list of elements to which the closure is to be applied. The closure tripleAll
is defined to map the triple closure to all the elements of a list. This is shown
by the program output:

table: [3, 6, 9, 12]

◆

J.4 patterns of computation 427

f map f

, , ...

, , ...

FIGURE J.1 Application of map.

EXAMPLE 08
Mapping

Appendix.qxd 6/11/06 7:59 PM Page 427

A useful equivalence involving maps is that if we map one closure (f, say) across
a list x and then map the closure g across the result, the overall effect is the
same as mapping the composition of g and f to the list. Example 09 demon-
strates this equivalence.

// map closure
def map = { clos, list -> return list.collect(clos) }

// composition closure
def composition = { f, g, x -> return f(g(x)) }

// Multiply closure and two instances
def multiply = { x, y -> return x * y }

def triple = multiply.curry(3)
def quadruple = multiply.curry(4)

// composition of two maps...
def composeMapMap = composition.curry(map.curry(triple), map.curry(quadruple))

def tableComposeMapMap = composeMapMap([1, 2, 3, 4])

println “tableComposeMapMap: ${tableComposeMapMap}”

// ...equivalent to the map of a composition
def mapCompose = map.curry(composition.curry(triple, quadruple))

def tableMapCompose = mapCompose([1, 2, 3, 4])

println “tableMapCompose: ${tableMapCompose}”

The output from this program reveals that our assertion is true:

tableComposeMapMap: [12, 24, 36, 48]
tableMapCompose: [12, 24, 36, 48]

◆

J.5 business rules

Consider the problem of computing the net price of a specific Book item, tak-
ing into account the shop discount and any governmental taxes, such as value
added tax (or VAT). VAT is a tax on consumer expenditure. It is collected on

428 A P PE N D I X J Advanced Closures

EXAMPLE 09
Equivalents

Appendix.qxd 6/11/06 7:59 PM Page 428

business transactions, such as the supply of goods or services. If we were to
include this logic as part of the Book class, we are likely to hard-wire our
solution. A bookshop may change the value of its discount or apply it to
only a selection of its stock. Equally, the government may change the level
of the taxation.

The source code for the closure-based approach to solving this problem is
presented in Example 10.

// Book class and instance
class Book {

def name // properties
def author
def price
def category

}

// constants
def discountRate = 0.1
def taxRate = 0.17

// basic closures
def rMultiply = { y, x -> return x * y }
def lMultiply = { x, y -> return x * y }

def composition = { f, g, x -> return f(g(x)) }

// book closures
def calcDiscountedPrice = rMultiply.curry(1 -discountRate)

def calcTax = rMultiply.curry(1 + taxRate)

def calcNetPrice = composition.curry(calcTax, calcDiscountedPrice)

// now calculate net price
def netPrice = calcNetPrice(bk.price)

println “netPrice: ${netPrice}”

The closure rMultiply is a partial application candidate that adapts the binary
multiplication to be a unary closure by using a constant second operand. The
two book closures calcDiscountedPrice and calcTax are instances of the
rMultiply closure with set values for the multiplier value. The closure
calcNetPrice is the algorithm to compute the net price by first calculating the

def bk = new Book(name : ‘Groovy’, author : ‘KenB’, price : 25, category : ‘CompSci’)

J.5 business rules 429

EXAMPLE 10
Net price

Appendix.qxd 6/11/06 7:59 PM Page 429

discounted price and then adding the sales tax. Finally, we apply calcNetPrice
to the price of our book. The output is:

netPrice: 26.325

◆

Example 11 is concerned with ensuring that the maximum discount our book-
shop can give is capped by an upper limit. Therefore, we must compare the dis-
count amount obtained with the capped value and take the minimum of the two
in computing the discounted price. This is given in Example 11.

430 A P PE N D I X J Advanced Closures

EXAMPLE 11
Capped discount

// Book class and instance
class Book {

def name // properties
def author
def price
def category

}

def bk = new Book(name : ‘Groovy’, author : ‘KenB’, price : 35, category : ‘CompSci’)

// constants
def discountRate = 0.1
def taxRate = 0.17
def maxDiscount = 3

// basic closures
def rMultiply = { y, x -> return x * y }
def lMultiply = { x, y -> return x * y }

def subtract = { x, y -> return x – y }
def rSubtract = { y, x -> return x – y }
def lSubtract = { x, y -> return x – y }

// minimum closure
def min = { x, y -> return (x < y) ? x : y }

// identity closure
def id = { x -> return x }

Appendix.qxd 6/11/06 7:59 PM Page 430

// composition closures
def composition = { f, g, x -> return f(g(x)) }

// binary composition
def bComposition = { h, f, g, x -> return h(f(x), g(x)) }

// book closures
def calcDiscount = rMultiply.curry(discountRate)

def calcActualDiscount = bComposition.curry(min, calcDiscount, id)

def calcDiscountedPrice = bComposition.curry(subtract, id, calcActualDiscount)

def calcTax = rMultiply.curry(1 + taxRate)

def calcNetPrice = composition.curry(calcTax, calcDiscountedPrice)

// now calculate net price
println “bk.price: ${bk.price}”

def netPrice = calcNetPrice(bk.price)
println “netPrice: ${netPrice}”

First, observe the identity closure, id. It simply returns with the value of its sin-
gle parameter. The binary closure min determines the least of its two parameters.
The bComposition (binary composition) closure applies a binary closure to the
values produced by two unary closures applied to the same value. The partial
closure calcDiscount is a unary closure that multiplies the book price with the
discount rate. The calcActualDiscount closure compares the discounted price
with the capped limit. Finally, the closure calcDiscountedPrice determines the
actual discounted price.

Both calcActualDiscount and calcDiscountedPrice are partial applications
of the bComposition closure. In the first example, the program finds the mini-
mum and, in the second example, it finds the difference. The bComposition clo-
sure is defined as

bComposition = {h, f, g, x -> return h(f(x), g(x))}

Here, f and g are the unary closures while h is the binary closure. Note how both
f and g are applied to the same parameter x. The actual value for this will be the
book price. Here is the program output:

bk.price: 35
netPrice: 36.855

◆

J.5 business rules 431

Appendix.qxd 6/11/06 7:59 PM Page 431

J.6 packaging

These last examples have developed a range of useful closures that can be com-
bined flexibly. It would be sensible, therefore, to package them into a class that
can then be imported into an application. A first draft for this class might be:

package fp
/**
* The Functor class contains a series of static closures that
* support functional programming constructs.
*/

abstract class Functor {

// arithmetic (binary, left commute, and right commute)
public static Closure bAdd = {x, y -> return x + y}
public static Closure rAdd = {y, x -> return x + y}
public static Closure lAdd = {x, y -> return x + y}

public static Closure bSubtract = {x, y -> return x – y}
public static Closure rSubtract = {y, x -> return x – y}
public static Closure lSubtract = {x, y -> return x – y}

public static Closure bMultiply = {x, y -> return x * y}
public static Closure rMultiply = {y, x -> return x * y}
public static Closure lMultiply = {x, y -> return x * y}

public static Closure bDivide= {x, y -> return x / y}
public static Closure rDivide= {y, x -> return x / y}
public static Closure lDivide= {x, y -> return x / y}

public static Closure bModulus = {x, y -> return x % y}
public static Closure rModulus = {y, x -> return x % y}
public static Closure lModulus = {x, y -> return x % y}

// min/max
public static Closure bMin = {x, y -> return (x < y) ? x : y }
public static Closure bMax = {x, y -> return (x < y) ? y : x }

// identity
public static Closure id = {x -> return x}

public static Closure konst = {x, y -> return y}

// composition
public static Closure composition = {f, g, x -> return f(g(x))}

432 A P PE N D I X J Advanced Closures

Appendix.qxd 6/11/06 7:59 PM Page 432

public static Closure bComposition = {h, f, g, x -> return h(f(x), g(x))}

// lists
public static Closure head = {list -> return (list.size() == 0) ? null : list[0]}

public static Closure tail = {list ->
return (list.size() == 0) ? [] : list[1..<list.size()]

}
public static Closure cons = {item, list ->

def copy = list.clone()
copy.add(0, item)
return copy

}

public static Closure map = { action, list -> return list.collect(action) }

public static Closure apply = { action, list -> list.each(action) }

public static Closure filter = { predicate, list -> return list.findAll(predicate) }

public static Closure forAll = { predicate, list ->
if(list.size() == 0)

return true
else if(predicate(list[0]))

return this.call(predicate, list[1..<list. size()])
else

return false
}

public static Closure thereExists = { predicate, list ->
if(list.size() == 0)

return false
else if(predicate(list[0]))

return true
else

return this.call(predicate,list[1..<list.size()])
}

// others ...
}

J.6 packaging 433

The class includes closures for all the arithmetic, relational, and logical opera-
tors. Following our discussion on commutativity, we have provided the normal
binary version of the operator together with left and right commutative forms.
The closures head, tail, and cons repeat the methods first introduced in
Chapter 9. We also have the closures composition, map, filter, and so on. The
class is defined asabstract since we have no intention of creating an instance. It
simply acts as a package of closures.

Appendix.qxd 6/11/06 7:59 PM Page 433

Figure J.2 describes the filter closure. If p represents some predicate function
(closure, returning a Boolean value), then when applied to a triangle, it delivers
true and when applied to a square it produces false. Now, filter p list delivers
a new List containing only those triangles that satisfy the predicate.

Now, revisiting the previous coding as Example 12, we simplify the appli-
cation. The first difference to observe is that we are required to reintroduce the
call method; otherwise, the Groovy compiler cannot disambiguate the code.
Further, the bMin, id, and bSubtract closures must be qualified as members of
the Functor class. The program delivers the same output as that of Example 11.

434 A P PE N D I X J Advanced Closures

PP

FALSETRUE

filter p

, ,, ...

, ...

FIGURE J.2 Filter closure.

EXAMPLE 12
Using the Functor
class

import fp.*

// Book class and instance
class Book {

def name // properties
def author
def price
def category

}

def bk = new Book(name : ‘Groovy’, author : ‘KenB’, price : 35, category : ‘CompSci’)

// constants
def discountRate = 0.1
def taxRate = 0.17
def maxDiscount = 3

Appendix.qxd 6/11/06 7:59 PM Page 434

// book closures
def calcDiscount = Functor.rMultiply.curry(discountRate)

def calcActualDiscount = Functor.bComposition.curry(Functor.bMin, calcDiscount, Functor.id)

def calcDiscountedPrice = Functor.bComposition.curry(Functor.bSubtract,
Functor.id, calcActualDiscount)

def calcTax = Functor.rMultiply.curry(1 + taxRate)

def calcNetPrice = Functor.composition.curry(calcTax, calcDiscountedPrice)

// now calculate net price
println “bk.price: ${bk.price}”

def netPrice = calcNetPrice(bk.price)
println “netPrice: ${netPrice}”

◆

J.6 packaging 435

EXAMPLE 13
Finding the length
of words

Class Functor also includes the closures introduced as our patterns of com-
putation. For example, the map closure is used to apply an action (represented
by a closure) to a List. Example 13 demonstrates finding the length of each
word in a List of words, returning a new List.

import fp.*

def size = { text -> return text.length() }

println “map(size, [‘Edinburgh’, ‘Glasgow’, ‘Perth’]): ${Functor.map.call(size,
[‘Edinburgh’, ‘Glasgow’, ‘Perth’])}”

This example produces the output:

map(size, [‘Edinburgh’, ‘Glasgow’, ‘Perth’]): [9, 7, 5]

◆

The Functor class also includes the filter closure. This applies a predicate (a
Boolean-valued closure) to a List. It returns a List of all the elements satisfying
the predicate, in their original order. Example 14 demonstrates finding all words
of length 3. The output is:

filter(isSize3, rhyme): [Fee, Fie, Fum]

Appendix.qxd 6/11/06 7:59 PM Page 435

import fp.*

def isSize3 = {text -> return (text.length() == 3)}

def rhyme = [‘Fee’, ‘Fie’, ‘Fo’, ‘Fum’]

println “filter(isSize3, rhyme): ${Functor.filter.call(isSize3, rhyme)}”

◆

Thanks to currying, these closures work together for Lists of Lists.
Example 15 shows mapping a filter on to a List of Lists. As in the previous
example, we seek words of length 3 in a List of word Lists. We get the result:

map(filter(isSize3), rhyme): [[Fee, Fie, Fum], [the]]

436 A P PE N D I X J Advanced Closures

EXAMPLE 14
Filter closure

EXAMPLE 15
Working together

EXAMPLE 16
Using
thereExists

import fp.*

def isSize3 = { text -> return (text.length() == 3) }

def rhyme = [[‘Fee’, ‘Fie’, ‘Fo’, ‘Fum’],
[‘I’, ‘smell’, ‘the’, ‘blood’, ‘of’, ‘an’, ‘Englishman’]
]

println “map(filter(isSize3), rhyme): ${Functor.map.call(Functor.filter.curry(isSize3), rhyme)}”

◆

The closure thereExists (forAll) reports whether some (every) element of
a List satisfies some predicate. It can be viewed as a quantifier over Lists.
Example 16 demonstrates thereExists and Example 17 shows forAll.

import fp.*

def isSize3 = { text -> return (text.length() == 3) }

def rhyme = [‘Fee’, ‘Fie’, ‘Fo’, ‘Fum’]

println “thereExists(isSize3, rhyme): ${Functor.thereExists.call(isSize3, rhyme)}”

Appendix.qxd 6/11/06 7:59 PM Page 436

The output from this example is given in the following text. Here, we see that
there is at least one word of length 3.

thereExists(isSize3, rhyme): true

◆

J.6 packaging 437

EXAMPLE 17
Using forAll

EXAMPLE 18
Model constraints

*
EmployeecCompanyc

- employees - manager

0..1
- staff *

FIGURE J.3 Class diagram.

import fp.*

def isSize3 = { text -> return (text.length() == 3) }

def rhyme = [‘Fee’, ‘Fie’, ‘Fo’, ‘Fum’]

println “forAll(isSize3, rhyme): ${Functor.forAll.call(isSize3, rhyme)}”

Running this example shows that not all words are of length 3:

forAll(isSize3, rhyme): false

◆

These quantifiers over lists can be employed to make assertions about the
operating of our models. Figure J.3 is a class diagram for an organization. The
model shows that employees are given managerial roles over team members.
A constraint we might wish to ensure is that every employee has some other
employee as his or her manager.

In Example 18, employee JonK has responsibility for KenB and JohnS.
However, JonK reports to no one. The forAll closure can be used to identify this
inconsistency.

import java.util.*

import fp.*

class Employee {

def String toString() {
return “Employee: ${id} ${name}”

}

Appendix.qxd 6/11/06 7:59 PM Page 437

def addToTeam(employee) {
staff[employee.id] = employee
employee.manager = this

}

// ------properties -------------------

def id
def name
def staff = [:]
def manager = null

}

class Company {

def hireEmployee(employee) {
employees[employee.id] = employee

}

// ------properties -------------------

def name
def employees = [:]

}

def displayStaff(co) {
println “Company: ${co.name}”
println “====================”
co?.employees.each { entry -> println “ ${entry.value}” }

}

def co = new Company(name : ‘Napier’)

def emp1 = new Employee(id : 123, name : ‘KenB’)
def emp2 = new Employee(id : 456, name : ‘JohnS’)
def emp3 = new Employee(id : 789, name : ‘JonK’)

co.hireEmployee(emp1)
co.hireEmployee(emp2)
co.hireEmployee(emp3)

emp3.addToTeam(emp1)
emp3.addToTeam(emp2)

displayStaff(co)

def hasManager = { employee -> return (employee.manager != null) }

def staff = co.employees.values().toList()

438 A P PE N D I X J Advanced Closures

Appendix.qxd 6/11/06 7:59 PM Page 438

println “Every employee has a manager?: ${Functor.forAll.call(hasManager, staff)}”

// Now make JonK a member of own team
emp3.addToTeam(emp3)
println “Every employee has a manager?: ${Functor.forAll.call(hasManager, staff)}”

When we execute this program, the output is:

Company: Napier
====================

Employee: 789 JonK
Employee: 456 JohnS
Employee: 123 KenB

Every employee has a manager?: false
Every employee has a manager?: true

We see from the penultimate line of output that the condition we set is not ful-
filled. The predicate closure hasManager determines that a given employee has
been assigned a manager. The forAll closure then determines that this predicate
is applicable to all employees.

◆

J.7 list reduction

The Functor class includes two list-reducing closures, rFold and lFold. These
closures are examples of a very general computation pattern. Suppose that we
have the list [x1, x2, ..., xn] and we wish to compute x1 + x2 + ... + xn.
We can view this equivalently as add(x1, add(x2, ..., add(xn, 0) ...)). The
closure rFold is described by Figure J.4. At the left, we have f as a binary clo-
sure, taking a circle value and a square value and delivering a square. Hence,
rFold f e list delivers a square where the arguments e and list are, respec-
tively, a square and a List of circles. The lower part of Figure J.4 reveals how the
function (closure) is folded in from the rightmost element.

rFold = { f, e, list ->
def size = list.size()
def res = e
for(index in 0..<size) {

res = f(list[size -1 -index], res)
}
return res

}

J.7 list reduction 439

Appendix.qxd 6/11/06 7:59 PM Page 439

440 A P PE N D I X J Advanced Closures

f

f

, ,, ...

, ,, ...

rFold f e

e

f

f

f

FIGURE J.4 rFold closure.

captures the essence of this reduction in which the parameter f denotes the
binary closure, the parameter e is the base value, and the parameter list is the
list to process. To compute the sum of a list of integers, we would use bAdd from
class Functor as the binary closure and literal 0 (zero) as the base value. Example
19 illustrates.

import fp.*

// Closure sum adds the items in a list
def sum = Functor.rFold.curry(Functor.bAdd, 0)

EXAMPLE 19
List reduction

Appendix.qxd 6/11/06 7:59 PM Page 440

println “sum: ${sum([11, 12, 13, 14])}”

def append = { list1, list2 ->
def result = []
result.addAll(list1)
result.addAll(list2)

return result
}

// Closure flat flattens a list of lists
def flat = Functor.rFold.curry(append, [])

println “flat: ${flat([[11, 12, 13], [21, 22, 23, 24], [31, 32]])}”

◆

Observe how the sum closure is as previously discussed. Using the append closure
defined in the program, we can also flatten a list of lists. Here, the base value is
the empty list. The output produced is:

sum: 50
flat: [11, 12, 13, 21, 22, 23, 24, 31, 32]

J.8 exercises

1. Develop a simple closure entitled square to find the product of its single
parameter.

2. Develop a simple closure entitled twice to deliver twice the value of its
single parameter.

3. Develop a simple closure entitled isEven that determines whether its sin-
gle integer parameter is even.

4. Using the Functor class developed in this appendix, and the closures dec =
Functor.rSubtract.curry(1) and inc = Functor.rAdd.curry(1), predict
the value produced by Functor.bMultiply.call(inc(4), dec(4)).

5. Using the closures inc and dec defined in the previous exercise, determine
the value of Functor.composition.curry(inc, dec).call(4).

6. Given the closures leftLT = Functor.lLt.curry(3) and rightLT =
Functor.rLt.curry(5), determine the value of Functor.bComposition.
curry(Functor.bAnd, leftLT, rightLT).call(4).

J.8 exercises 441

Appendix.qxd 6/11/06 7:59 PM Page 441

7. Given the multiply closure as defined in Example 04, determine what p,
q, and r represent and demonstrate how they can be used.

def p = multiply.curry(2)
def q = multiply.curry(3, 4)
def r = multiply.curry()

8. Using the Functor class described in this appendix, describe the closure
defined as def inc = Functor.lAdd.curry(1). Now, specify the effect of
the closure defined by:

Functor.map.curry(Functor.* composition.curry(inc, inc))

9. Using the head and tail closures defined in class Functor, predict the
effect of calling the following two closures:

def hT = Functor.composition.curry(Functor.head.curry(), Functor.tail.curry())
def tT = Functor.composition.curry(Functor.tail.curry(), Functor.tail.curry())

10. Use the closures defined in the Functor class and redefine as a closure the
method upTo declared in Example 02 of Appendix G Now, define the clo-
sure factors that returns a list of integers that are the factors of its integer
parameter:

def factors = {n -> ...}

Define the closure isEmpty, which returns the boolean true if its list
parameter is the empty list:

def isEmpty = {list -> ...}

Using curried composition, define the closure prime, which returns
the Boolean true if the integer parameter is a prime number (a inte-
ger divisible only by 1 and by itself). Now, curry the filter closure
in class Functor with prime, then find the prime numbers from 2 to
50 inclusive.

11. The closure insert introduces a new item into a sorted list so that the
sort order of the elements is maintained:

def insert = { x, list ->
def res = []

442 A P PE N D I X J Advanced Closures

Appendix.qxd 6/11/06 7:59 PM Page 442

if(list.size() == 0) {
res << x

} else {
def inserted = false
for(element in list) {

if(inserted == false && x < element) {
inserted = true
res << x

}
res << element

}
if(inserted == false) {

res << x
}

}

return res
}

Now, determine the effect of the closure defined as:

Functor.rFold.curry(insert, [])

when applied to a list of integers.

12. Given the closure xxx defined by:

def xxx = Functor.rFold.curry(Functor.cons)

then determine the value produced by:

xxx([11, 12], [13, 14])

13. Given the closures inc, xComp, and xComposition defined by:

def inc = { x -> return 1 + x }

def xComp = { h, f, x, y -> return h(f(x), y) }
def xComposition = xComp.curry(Functor.cons, inc)

and the closure xxx defined as:

xxx = Functor.rFold.curry(xComposition, [])

determine the effect of the expression:

xxx([11, 12, 13, 14])

J.6 exercises 443

Appendix.qxd 6/11/06 7:59 PM Page 443

and identify which closure from the Functor class is the equivalent of xxx.

14. Using the closures head, tail, and cons defined in the Functor class,
develop a closure insert that correctly inserts a new item into a sorted
list:

def insert = { x, list -> ... }

Now, use this closure to implement the closure insertSort that employs
the insert sort algorithm to sort a list of values:

def insertSort = { list -> ... }

444 A P PE N D I X J Advanced Closures

Appendix.qxd 6/11/06 7:59 PM Page 444

more on
builders

Chapters 19 and 20 introduced the notion of Groovy builders. Essentially,
Groovy builders allow us to easily represent nested treelike data structures such
as XML data. With a builder, specifically a MarkupBuilder, we can effortlessly
construct XML data. With a SwingBuilder, we can effortlessly construct a GUI
application comprised of Swing components.

In this appendix, we consider an AntBuilder that we can use to construct
Ant XML build files (Holzner, 2005) and execute them without having to deal
with XML. Also, we briefly demonstrate how we can make our own specialized
builders. We assume prior knowledge of Ant.

K.1 antbuilder

Groovy provides the AntBuilder class with which we can easily construct and
execute Ant XML build files. This is achieved without having to make any direct
use of XML. Further, as we have already noted, we can interleave any other
Groovy code with the AntBuilder code. Example 01 uses an AntBuilder to cre-
ate a directory and to copy its own file to the new directory.

import groovy.util.*

def aB = new AntBuilder()

aB.echo(message : ‘Start’)
aB.mkdir(dir : ‘demo’)

445

A P P E N D I X K

EXAMPLE 01
Create directory
and copy file

Appendix.qxd 6/11/06 7:59 PM Page 445

aB.copy(file : ‘example01.groovy’, todir : ‘demo’)
aB.echo(message : ‘End’)

◆

This example is a simple Ant build file that defines an Ant project. The
project has one or more targets, each consisting of a number of Ant tasks (see
http://ant.apache.org/manual/index.html). The code in Example 01 is effec-
tively the default task and invokes the Ant core tasks echo, copy, and mkdir. The
first echoes a message, the second copies a file to a directory, and the last creates
a directory.

Example 02 elaborates, this time copying all files with a groovy suffix to the
new directory. First, note how the normal Groovy definition for demoDir is
intermingled with the builder code. The pseudomethod fileSet specifies the
source directory with the dir parameter, while include is used to limit the files
to be copied.

import groovy.util.*

def aB = new AntBuilder()

aB.echo(message : ‘Start’)

def demoDir = ‘demo’

aB.mkdir(dir : demoDir)
aB.copy(todir : demoDir) {

aB.fileSet(dir : ‘.’) {
aB.include(name : ‘*.groovy’)

}
}
aB.echo(message : ‘End’)

◆

In Example 03, we use a scanner (class FileScanner; see GDK) to find all the
groovy files in the new directory, and then produce a list of their file names.

import groovy.util.*

def aB = new AntBuilder()

aB.echo(message : ‘Start’)

def demoDir = ‘demo’

446 A P PE N D I X K More on Builders

EXAMPLE 02
Create directory
and copy all
Groovy files

EXAMPLE 03
File scanning

Appendix.qxd 6/11/06 7:59 PM Page 446

def scanner = aB.fileScanner() {
aB.fileset(dir : demoDir) {

aB.include(name : ‘*.groovy’)
}

}

println “${demoDir}”
scanner.each { file ->

println “ ${file}”
}

aB.echo(message : ‘End’)

◆

The following example illustrates how Groovy might be used to construct an Ant
build, typical of what might be used by a Groovy developer. Targets are provided
to compile Groovy files, execute a script, run unit tests, or clean up. It was used by
the authors to develop the larger applications in the later chapters of the book.

The listing defines the Build class. It is designed to operate as a simple Ant
build file used to compile files, execute a script, and clean up afterward. The
Build class exploits the meta-object protocol (see http://www-128.ibm.com/
developerworks/java/library/j-pg12144.html) introduced in Appendix I by
redefining invokeMethod. Once we have an instance of this class, we can invoke
the pseudomethods compile, clean, and so on, as in:

def b = new Build()
b.clean()

The invokeMethod redirects the request to an implementation provided by a clo-
sure. The sample already given would call the clean closure. We see from its
code that it removes temporary files and directories. Similarly, the code:

def b = new Build()
b.compile()

calls the compile closure. Its code is dependent on the init task, and therefore
it first calls the init closure. The init closure creates some temporary working
directories and defines new Ant tasks whereby we can call the Groovy compiler
at runtime. Thereafter, closure compile executes the Groovy compiler against all
*.groovy files in the source directory.

K.1 antbuilder 447

Appendix.qxd 6/11/06 7:59 PM Page 447

File: Build.groovy

package build

import groovy.util.*

import java.io.*

import java.util.*

class Build {

public Object invokeMethod(String name, Object params) {
def target = targets[name]
if(target != null)

target.call(params)
else

usage.call(params)
return null

}

// -------properties -------------------

def aB = new AntBuilder()

def ENV_CLASSPATH = System.getenv(‘CLASSPATH’)
def ENV_GROOVY_HOME = System.getenv(‘GROOVY_HOME’)

def BASEDIR = ‘.’
def SRCDIR = BASEDIR
def DESTDIR = BASEDIR + ‘/classes’
def REPDIR = BASEDIR + ‘/reports’

def GROOVLETSDIR = BASEDIR + ‘/src’
def GSPDIR = BASEDIR + ‘/src’

def COMMONDIR = BASEDIR + ‘/../common’
def WEBDIR = BASEDIR + ‘/web’
def BUILDDIR = BASEDIR + ‘/build’
def DEPLOYDIR = BASEDIR + ‘/deploy’

def WEBAPPSDIR = ENV_CATALINA_HOME + ‘/webapps’

def BASIC_CLASSPATH = ‘basic.classpath’
def basicClasspath = aB.path(id : BASIC_CLASSPATH) {

aB.pathelement(path : “${SRCDIR};${DESTDIR}”)
aB.pathelement(location : “${ENV_CLASSPATH}”)

}

def COMPILE_CLASSPATH = ‘compile.classpath’
def compileClasspath = aB.path(id : COMPILE_CLASSPATH) {

aB.path(refid : BASIC_CLASSPATH)
}

448 A P PE N D I X K More on Builders

Appendix.qxd 6/11/06 7:59 PM Page 448

def clean = { params ->
aB.delete() {

aB.fileset(dir : “${SRCDIR}”, includes : ‘**/*.bak’)
aB.fileset(dir : “${SRCDIR}”, includes : ‘**/*.BAK’)
aB.fileset(dir : “${SRCDIR}”, includes : ‘**/*.txt’)

}
aB.delete(dir : “${DESTDIR}”)
aB.delete(dir : “${REPDIR}”)
aB.delete(dir : “${BUILDDIR}”)

}

def init = { params ->
aB.taskdef(name : ‘groovyc’, classname : ‘org.codehaus.groovy.ant.Groovyc’)
aB.taskdef(name : ‘groovy’, classname : ‘org.codehaus.groovy.ant.Groovy’)

aB.mkdir(dir : “${DESTDIR}”)
aB.mkdir(dir : “${REPDIR}”)
aB.mkdir(dir : “${BUILDDIR}”)

}

def compile = { params ->
init.call(params)

aB.groovyc(srcdir : “${SRCDIR}”, destdir : “${DESTDIR}”, classpath : “${basicClasspath}”)
}

def run = { params ->
compile.call(params)

aB.groovy(src : params[1]) {
aB.classpath() {

aB.pathelement(path : “${SRCDIR};${DESTDIR}”)
aB.pathelement(location : “${ENV_CLASSPATH}”)

}
}

}

def test = { params ->
compile.call(params)

aB.junit(fork : ‘yes’) {
aB.classpath() {

aB.pathelement(path : “${SRCDIR};${DESTDIR}”)
aB.pathelement(location : “${ENV_CLASSPATH}”)

}

K.1 antbuilder 449

Appendix.qxd 6/11/06 7:59 PM Page 449

aB.formatter(type : ‘plain’)

aB.batchtest(todir : “${REPDIR}”) {
aB.fileset(dir : “${DESTDIR}”) {

aB.include(name : ‘**/*Test.class’)
}

}
}

}

def assemble = { params ->
init.call(params)

aB.copy(todir : “${BUILDDIR}”) {
aB.fileset(dir : “${COMMONDIR}”)

}

aB.copy(todir : “${BUILDDIR}”) {
aB.fileset(dir : “${GROOVLETSDIR}”) {

aB.include(name : “**/*.groovy”)
aB.include(name : “**/*.gsp”)

}
aB.fileset(dir : “${BASEDIR}”) {

aB.include(name : “**/*.html”)
}

}
}

def deploy = { params ->
assemble.call(params)

aB.copy(todir : “${WEBAPPSDIR}/${params[1]}”) {
aB.fileset(dir : “${BUILDDIR}”)

}
}

def undeploy = { params ->
aB.delete(dir : “${WEBAPPSDIR}/${params[1]}”)

}

def db = { params ->
aB.delete(dir : “${params[1]}DB”)
aB.sql(url : “jdbc:derby:${params[1]}DB;create=true”, userid : ‘’, password : ‘’,

driver : ‘org.apache.derby.jdbc.EmbeddedDriver’, src : “${params[1]}.sql”)
}

def usage = { params ->
aB.echo(message : ‘’)

450 A P PE N D I X K More on Builders

Appendix.qxd 6/11/06 7:59 PM Page 450

aB.echo(message : ‘Available targets:’)
aB.echo(message : ‘’)
aB.echo(message : ‘clean: Remove all temporary files/directories’)
aB.echo(message : ‘compile: Compile all source files’)
aB.echo(message : ‘deploy: Deploy the web application as a directory’)
aB.echo(message : ‘init: Prepare working directories’)
aB.echo(message : ‘db: Establish and populate the database’)
aB.echo(message : ‘run: Execute the named script’)
aB.echo(message : ‘test: JUnit tests’)
aB.echo(message : ‘usage: Default target’)
aB.echo(message : ‘’)

}

def targets = [‘clean’: clean,
‘init’ : init,
‘compile’ : compile,
‘run’ : run,
‘test’ : test,
‘assemble’ : assemble,
‘deploy’ : deploy,
‘undeploy’ : undeploy,
‘db’ : db,
‘usage’ : usage
]

}

K.1 antbuilder 451

The test closure is used in, for example, Chapter 16, where a sizable amount
of unit testing is performed. Equally, the deploy closure is used in Chapter 24
to assemble all the necessary files to deploy to the Tomcat server.

A simple script is used as a driver. The file gbuild.groovy is shown in the
following listing.

File: Build driver

/**
* Usage:
* groovy gbuild.groovy clean
* groovy gbuild.groovy init
* groovy gbuild.groovy compile
* groovy gbuild.groovy test
* groovy gbuild.groovy run script-file-name
* groovy gbuild.groovy deploy project-name
* groovy gbuild.groovy undeploy project-name
* groovy gbuild.groovy db database-name
* groovy gbuild.groovy usage
*

Appendix.qxd 6/11/06 7:59 PM Page 451

* groovy gbuild.groovy default target: usage
*/

def b = new Build()

if(args.size() > 0) {
def target = args[0]
b.invokeMethod(target, args)

}else
b.usage(args)

This Groovy script allows us to use the Build class as described in the usage
comment. For example:

groovy gbuild.groovy clean

executes the clean closure.
Chapter 18 introduced database processing into the library case study. In

that example, we established a database with tables representing the borrowers
and the publications. The tables are also initialized with representative values.
This information is given in the file library.sql:

create table borrowers(
membershipNumber varchar(10) not null,
name varchar(20),

primary key(membershipNumber)
);

create table publications(
catalogNumber varchar(10) not null,
title varchar(40),
author varchar(20),
editor varchar(20),
type varchar(8),

borrowerID varchar(10),

primary key(catalogNumber),
foreign key(borrowerID) references borrowers(membershipNumber)

);

insert into borrowers values(‘1234’, ‘Jessie’);

insert into publications values(‘111’, ‘Groovy’, ‘KenB’, ‘’,‘BOOK’, ‘1234’);
insert into publications values(‘222’, ‘UML’, ‘JohnS’, ‘’,‘BOOK’, null);
insert into publications values(‘333’, ‘OOD’, ‘’, ‘JonK’,‘JOURNAL’, null);

452 A P PE N D I X K More on Builders

Appendix.qxd 6/11/06 7:59 PM Page 452

The db target accepts this filename as parameter and creates a database named
libraryDB, using the file name and the DB suffix. From Chapter 18, we would
use:

groovy gbuild.groovy db library

to create and initially populate the libraryDB database.

K.2 specialized builders

To create a new builder such as the MarkupBuilder or AntBuilder, the program-
mer must implement a subclass of the groovy.util.BuilderSupport class. The
methods to be implemented by the subclass are the following:

void setParent(Object parent, Object child);
Object createNode(Object name); // a node without parameter and closure

For example, method createNode(Object name, Object value) is invoked by
the builder when the Groovy code includes:

aB.demo() {
...
}

The parameter name for method createNode has the name for the pseudo-
method demo. The parameter value supplies the closure and its content.

Additionally, the BuilderSupport class has two (hook) methods, which sub-
classes may choose to redefine to provide specialized behaviors. Method getName
is a hook method to allow names to be converted into some other object, such
as a qualified name in XML builders. Method nodeCompleted allows nodes to be
processed once they have had all of their dependent nodes applied.

void nodeCompleted(Object parent, Object node);
Object getName(String methodName);

Example 04 defines the class MonitorBuilder which subclasses
BuilderSupport. Class MonitorBuilder performs no real work. However, it
defines these abstract methods to display their name and parameters when

Object createNode(Object name, Map attributes, Object value); //a node without parameters, but
with closure and parameters

Objec createNode(Object name, Map attributes); // a node without closure but with parameters
Object createNode(Object name, Object value); //a node without parameters, but with closure

K.2 specialized builders 453

Appendix.qxd 6/11/06 7:59 PM Page 453

invoked. That way, the class monitors where these methods are called when pro-
cessing builder code.

import groovy.util.*

class MonitorBuilder extends BuilderSupport {

protected void setParent(Object parent, Object child) {
println “setParent(${parent}, ${child})”

}

protected Object createNode(Object name) {
println “createNode(${name})”
return name

}

protected Object createNode(Object name, Object value) {
println “createNode(${name}, ${value})”
return name

}

protected Object createNode(Object name, Map attributes, Object value) {
println “createNode(${name}, ${attributes}, ${value})”
return name

}

protected Object createNode(Object name, Map attributes) {
return createNode(name, attributes, null)

}

protected void nodeCompleted(Object parent, Object node) {
println “nodeCompleted(${parent}, ${node})”

}
}

def mB = new MonitorBuilder()

def monitor = mB.database(name : ‘library’) {
table(name : ‘Book’) {

field(name : ‘title’, type : ‘text’)
field(name : ‘isbn’, type : ‘text’)
field(name : ‘price’, type : ‘integer’)
field(name : ‘author’, type : ‘id’)
field(name : ‘publisher’, type : ‘id’)

}
}

454 A P PE N D I X K More on Builders

EXAMPLE 04
MonitorBuilder
class

Appendix.qxd 6/11/06 7:59 PM Page 454

When we run this program, the output is:

createNode(database, [“name”:”library”], null)
createNode(table, [“name”:”Book”], null)
setParent(database, table)
createNode(field, [“name”:”title”, “type”:”text”], null)
setParent(table, field)
nodeCompleted(table, field)
createNode(field, [“name”:”isbn”, “type”:”text”], null)
setParent(table, field)
nodeCompleted(table, field)
createNode(field, [“name”:”price”, “type”:”integer”], null)
setParent(table, field)
nodeCompleted(table, field)
createNode(field, [“name”:”author”, “type”:”id”], null)
setParent(table, field)
nodeCompleted(table, field)
createNode(field, [“name”:”publisher”, “type”:”id”], null)
setParent(table, field)
nodeCompleted(table, field)
nodeCompleted(database, table)
nodeCompleted(null, database)

The first and final lines show the database pseudomethod created and com-
pleted. Between these two events, the other nodes are created and completed.
Nested within the database node, there is the table node and, within it, five
field nodes are created. The output demonstrates that we can intercept the
createNode and nodeCompleted method calls to provide some behavior. For
example, the MarkupBuilder issues XML/HTML content.

◆

In Chapter 19, Example 08 reads an XML file describing a relational table
and converts it to SQL to create the database table. In Example 05, we do the
same with a specialized builder.

import groovy.util.*

import java.io.*

class SqlBuilder extends BuilderSupport {

protected void setParent(Object parent, Object child) {
}

K.2 specialized builders 455

EXAMPLE 05
A specialized SQL
builder

Appendix.qxd 6/11/06 7:59 PM Page 455

protected Object createNode(Object name) {
println “createNode(${name})”
return name

}

protected Object createNode(Object name, Object value) {
println “createNode(${name}, ${value})”
return name

}
protected Object createNode(Object name, Map attributes, Object value) {

this.processStartNode(name, attributes, value)
return name

}

protected Object createNode(Object name, Map attributes) {
return createNode(name, attributes, null)

}

protected void nodeComplement(Object parent, Object node){
this.processEndNode(parent,node)

}

private void processStartNode(Object name, Map atributes, Object value) {
switch(name) {

case ‘database’:
out.println “DROP DATABASE IF EXISTS ${attributes.get(‘name’)};”
out.println “CREATE DATABASE ${attributes.get(‘name’)};”
break

case ‘table’
out.println “DROP TABLE IF EXISTS ${attributes.get(‘name’)};”
out.println “CREATE TABLE ${attributes.get(‘name’)}(“
out.print”$.{attributes.get(‘name’)}_ID INTEGER NOT NULL”
break

case ‘field’:
out.println”,”
out.print”${attributes.get(‘name’)}${type To SQL[attributes.get(‘type’)]}
break

}
}

private void processEndNode(Object parent, Object node) {
switch(node) {

case ‘table’ :
out.println()
out.println ‘);’
break

}
}

456 A P PE N D I X K More on Builders

Appendix.qxd 6/11/06 7:59 PM Page 456

// ------properties --------------

def out
def typeToSQL = [‘text’ : ‘TEXT NOT NULL’,

‘id’ : ‘INTEGER NOT NULL’,
‘integer’ : ‘INTEGER NOT NULL’]

}

def sB = new SqlBuilder(out : new File(‘db.sql’).newPrintWriter())

def sql = sB.database(name : ‘library’) {
table(name : ‘Book’) {

field(name : ‘title’, type : ‘text’)
field(name : ‘isbn’, type : ‘text’)
field(name : ‘price’, type : ‘integer’)
field(name : ‘author’, type : ‘id’)
field(name : ‘publisher’, type : ‘id’)

}
}

sB.out.flush()
sB.out.close()

◆

K.2 specialized builders 457

Appendix.qxd 6/11/06 7:59 PM Page 457

A P P E N D I X L
more on
gui builders

Chapter 20 introduced basic Swing components using the SwingBuilder
markup generator. Here, we consider applications that include other compo-
nents, such as menus, menu items, toolbars, and dialogs, that we might expect
to find in a typical graphical application.

L.1 menus and toolbars

A graphical application often includes a menu that provides the user with access
to the functions of the program. A menu bar is used to carry a number of
menus. In turn, each menu is a drop-down for a number of menu items that
represent the services of the application. They are easy to construct with
SwingBuilder using menuBars, menus, and menuItems. The hierarchy is, as we
might expect, with the menuBar enclosing the menus and each menu enclosing the
menuItems. Each menu has a text label and a shortcut mnemonic. The menuItems
also have text labels and a shortcut mnemonic in addition to closures that rep-
resents the action when the menu item is selected. Example 01 is the Groovy
script that produces the GUI as shown in Figure L.1.

import groovy.swing.SwingBuilder
import javax.swing.*

// Create a builder
def sB = new SwingBuilder()

458

EXAMPLE 01
A simple menu

Appendix.qxd 6/11/06 7:59 PM Page 458

// Now the frame
def frame = sB.frame(title : ‘Example01’, location : [100, 100],

size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE) {
menuBar {

menu(text : ‘File’, mnemonic : ‘F’) {
menuItem() {

action(name : ‘New’, mnemonic : ‘N’, closure : { println ‘File + New’ })
}

menuItem() {
action(name : ‘Open...’, mnemonic : ‘O’, closure : { println ‘File + Open...’ })

}

separator()
menuItem() {

action(name : ‘Save’, mnemonic : ‘S’, closure : { println ‘File + Save’ })
}

menuItem() {
action(name : ‘Save as...’, mnemonic : ‘A’, closure : { println ‘File + Save as...’ })

}

separator()
menuItem() {

action(name : ‘Exit’, mnemonic : ‘X’, closure : { System.exit(0) })
}

}

L.1 menus and toolbars 459

FIGURE L.1 A menu.

Appendix.qxd 6/11/06 7:59 PM Page 459

menu(text : ‘Help’, mnemonic : ‘H’) {
menuItem() {

action(name : ‘About’, mnemonic : ‘A’, closure : { println ‘Help + About’ })
}

}
}

}

// Now show it
frame.pack()
frame.setVisible(true)

◆

460 A P PE N D I X L More on GUI Builders

EXAMPLE 02
Menus from lists

Establishing the menu is probably better accomplished by using pre-initial-
ized Groovy Lists. Example 02 revisits the previous example but employs a List
to construct the menus and the menuItems. In the code, menus represents a List,
the items of which are themselves Lists. These enclosed Lists carry the details
for an individual menu. They document the name of the menu and its short-
cut, then the name, shortcut, and handler for every menu item. The iterator,
code, menus.each, processes the List of Lists to assemble the menu bar.

import groovy.swing.SwingBuilder
import javax.swing.*

// Menu handlers
def fileNew = {

println ‘File + New’
}

def fileOpen = {
println ‘File + Open...’

}

def fileSave = {
println ‘File + Save’

}

def fileSaveAs = {
println ‘File + Save as...’

}

def fileExit = {
System.exit(0)

}

Appendix.qxd 6/11/06 7:59 PM Page 460

def helpAbout = {
println ‘Help + About’

}

// Create a builder
def sB = new SwingBuilder()

// Now the frame
def frame = sB.frame(title : ‘Example02’, location : [100, 100],

size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE) {
menuBar {

def fileMenu = [[‘File’, ‘F’],
[‘New’, ‘N’, fileNew],
[‘Open...’, ‘O’, fileOpen],
null,
[‘Save’, ‘S’, fileSave],
[‘Save as...’, ‘A’, fileSaveAs],
null,
[‘Exit’, ‘X’, fileExit]
]

def helpMenu = [[‘Help’, ‘H’],
[‘About’, ‘A’, helpAbout]
]

def menus = [fileMenu, helpMenu]

menus.each { mnu ->
def mnuDetails = mnu[0]
sB.menu(text : mnuDetails[0], mnemonic : mnuDetails[1]) {

for(k in 1..<mnu.size()) {
def mnuItem = mnu[k]

if(mnuItem == null)
sB.separator()

else
sB.menuItem() {

sB.action(name : mnuItem[0], mnemonic : mnuItem[1], closure : mnuItem[2])
}

}
}

}
}

}

// Now show it
frame.pack()
frame.setVisible(true)

◆

L.1 menus and toolbars 461

Appendix.qxd 6/11/06 7:59 PM Page 461

Most graphical applications support a toolbar to accompany the menu bar.
It is normally located along the top of the application window immediately
below the menu bar. Each toolbar button operates as a shortcut for one of the
menu items.

Figure L.2 shows an application with a traditional menu and toolbar. The
user has opened the Help menu and reveals the list of menu items. Normally,
the user would select one of these items and obtain some functionality from the
application. Notice also the toolbar with its New, File, and Save buttons. Our
code merely demonstrates the construction of such a menu and toolbar, but
does not include any meaningful behavior. Of course, following earlier exam-
ples, we could provide appropriate handlers.

Example 03 is the listing for our application. Observe how the menu bar
and the toolbar are assembled. Their content is specified in Lists of Lists. This
simplifies the construction and possible revisions to the menu and toolbar.
Observe how the second iterator menus.each creates and initializes the toolbar
buttons with its text and handler. That way, we associate the one handler with
the menu item and its corresponding toolbar button.

import groovy.swing.SwingBuilder
import javax.swing.*

import java.awt.*

// Text area of set size
class FixedTextArea extends JTextArea {

Dimension getMinimumSize() { return TEXTAREASIZE }
Dimension getMaximumSize() { return TEXTAREASIZE }
Dimension getPreferredSize() { return TEXTAREASIZE }
private static final TEXTAREASIZE = new Dimension(400, 400)

}

// Menu handlers
def fileNew = {

println ‘File + New’
}

def fileOpen = {
println ‘File + Open...’

}

def fileSave = {
println ‘File + Save’

}

462 A P PE N D I X L More on GUI Builders

EXAMPLE 03
Menu and toolbars

Appendix.qxd 6/11/06 7:59 PM Page 462

def fileSaveAs = {
println ‘File + Save as...’

}

def fileExit = {
System.exit(0)

}

def helpAbout = {
println ‘Help + About’

}

L.1 menus and toolbars 463

FIGURE L.2 Menu bar and tool bar.

Appendix.qxd 6/11/06 7:59 PM Page 463

// Create a builder
def sB = new SwingBuilder()

// Now the frame
def frame = sB.frame(title : ‘Example03’, location : [100, 100],

size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE) {
def fileMenu = [[‘File’, ‘F’],

[‘New’, ‘N’, true, fileNew],
[‘Open...’, ‘O’, true, fileOpen],
null,
[‘Save’, ‘S’, true, fileSave],
[‘Save as...’, ‘A’, false, fileSaveAs],
null,
[‘Exit’, ‘X’, false, fileExit]
]

def helpMenu = [[‘Help’, ‘H’],
[‘About’, ‘A’, false, helpAbout]
]

def menus = [fileMenu, helpMenu]

menuBar {
menus.each { mnu ->

def mnuDetails = mnu[0]
sB.menu(text : mnuDetails[0], mnemonic : mnuDetails[1]) {

for(k in 1..<mnu.size()) {
def mnuItem = mnu[k]
if(mnuItem == null)

sB.separator()
else {

sB.menuItem() {
sB.action(name : mnuItem[0], mnemonic :mnuItem[1], closure : mnuItem[3])

}
}

}
}

}
}

sB.panel(layout : new BorderLayout()) {
toolBar(constraints : BorderLayout.NORTH) {

menus.each { toolMnu ->
for(k in 1..<toolMnu.size()) {

def toolItem = toolMnu[k]
if(toolItem != null && toolItem[2] == true) {

def toolText = toolItem[0]

464 A P PE N D I X L More on GUI Builders

Appendix.qxd 6/11/06 7:59 PM Page 464

def toolAction = toolItem[3]
sB.button(text : toolText, actionPerformed : toolAction)

}
}

}
}

sB.panel(constraints : BorderLayout.CENTER) {
widget(new FixedTextArea(enabled : false))

}
}

}

// Now show it
frame.pack()
frame.setVisible(true)

◆

L.2 dialogs

This final example shows how we might introduce a dialog into an application.
In the listing for Example 04, we subclass the Swing class JDialog to provide our
own specialized dialog. This dialog is populated with two text fields to obtain
the user name and password as might be found in many applications. Execution
of the program appears as in Figure L.3 and the listing in Example 04.

import groovy.swing.SwingBuilder
import javax.swing.*

import java.awt.*

// Text area of set size
class FixedTextArea extends JTextArea {

Dimension getMinimumSize() { return TEXTAREASIZE }
Dimension getMaximumSize() { return TEXTAREASIZE }
Dimension getPreferredSize() { return TEXTAREASIZE }

private static final TEXTAREASIZE = new Dimension(400, 400)
}

// Builder
def sB = new SwingBuilder()

L.2 dialogs 465

EXAMPLE 04
An application
with a dialog

Appendix.qxd 6/11/06 7:59 PM Page 465

def loginDialog = null

// frame handlers
def loginHandler = {

loginDialog.setVisible(true)
}

// Now the main panel...
def mainPanel = {

sB.panel(layout : new BorderLayout()) {
panel(constraints : BorderLayout.WEST) {

button(text : ‘Login’, actionPerformed : loginHandler)
}
panel(constraints : BorderLayout.CENTER) {

widget(new FixedTextArea(enabled : false))
}

}
}

466 A P PE N D I X L More on GUI Builders

FIGURE L.3 An activated dialog.

Appendix.qxd 6/11/06 7:59 PM Page 466

// ...and finally the frame
def frame = sB.frame(title : ‘Example04’, location : [100, 100],

size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE) {
mainPanel()

}

// dialog handlers
def okHandler = {

loginDialog.setVisible(false)

def userName = nameField.getText()
def userPassword = passwordField.getText()

nameField.setText(“)
passwordField.setText(“)

if(userName == “)
println ‘NO user name given’

else if(userPassword == “”)
println ‘NO password given’

else
println “User: ${userName}”

}

def cancelHandler = {
loginDialog.setVisible(false)

userName = “
userPassword = “

nameField.setText(“)
passwordField.setText(“)

}

def dialogPanel = {
sB.panel(layout : new BorderLayout()) {

panel(layout : new GridLayout(2, 2, 5, 5), constraints : BorderLayout.CENTER) {
label(text : ‘Username:’, horizontalAlignment : JLabel.RIGHT)
def nameField = textField(text : “”, columns : 20)
label(text : ‘Password:’, horizontalAlignment : JLabel.RIGHT)
def passwordField = passwordField(text : “”, columns : 20)

}
panel(constraints : BorderLayout.SOUTH) {

button(text : ‘OK’, actionPerformed : okHandler)
button(text : ‘Cancel’, actionPerformed : cancelHandler)

}
}

}

L.2 dialogs 467

Appendix.qxd 6/11/06 7:59 PM Page 467

loginDialog = sB.dialog(owner : frame, title : ‘Login’, size : [160, 120], modal : true) {
dialogPanel()

}

// Now show it
frame.pack()
frame.setVisible(true)

◆

468 A P PE N D I X L More on GUI Builders

Appendix.qxd 6/11/06 7:59 PM Page 468

469

bibliography

Beaulieu, Alan. Learning SQL. O’Reilly, 2005.

Beck, Kent. Extreme Programming Explained: Embrace Change. Addison-Wesley, 2004.

Bergsten, Hans. JavaServer Pages. O’Reilly, 2003.

Booch, Grady, James Rumbaugh, Ivar Jacobson. The Unified Modelling Language User
Guide. Addison-Wesley, 2005.

Brittain, Jasonn, Ian Darwin. Tomcat: The Definitive Guide. O’Reilly, 2003.

Harvey M. Deitel. C: How to Program (International Edition). Prentice Hall, 2003.

Eckel, Bruce. Thinking in Java. Prentice Hall, 2003.

Eckstein, Robert, Marc Loy, Dave Woods, James Elliott, Brian Cole. Java Swing.
O’Reilly, 2002.

Erl, Thomas. Service-Oriented Architecture: A Field Guide to Integrating XML and Web
Services. Prentice Hall, 2004.

Fisher, Maydene, Jon Ellis, Jonathon Bruce. JDBC API Tutorial and Reference.
Addison-Wesley, 2003.

Fitzgerald, Michael. Learning XSLT. O’Reilly, 2003.

Friedl, Jeffrey. Mastering Regular Expressions. O’Reilly, 2002.

BIB.qxd 02/01/1904 10:05 PM Page 469

Gamma, Erich, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns.
Addison-Wesley, 1995.

Grand, Mark. Patterns in Java. Wiley, 2002.

Holzner, Steve. Ant: The Definitive Guide. O’Reilly, 2005.

Johnson, Rod, Juergen Hoeller, Alef Arendsen, Thomas Risberg, Colin Sampaleanu.
Professional Development with the Spring Framework. Wrox, 2005.

Kernighan, Brian, Dennis Ritchie. The C Programming Language. Prentice Hall, 1988.

Link, Johannes. Unit Testing in Java: How Tests Drive the Code. Morgan Kaufmann,
2003.

Massol, Vincent. Junit in Action. Manning, 2003.

Meyer, Bertrand. Object-Oriented Software Construction. Prentice Hall, 1997.

Molinaro, Anthony. SQL Cookbook. O’Reilly, 2006.

Ousterhout, John. Scripting: Higher Level Programming for the 21st Century. IEEE
Computer Magazine, March 1998.

Pedroni, Samuele, Noel Rappin. Jython Essentials. O’Reilly, 2002.

van Rossum, Guido, Mark Lutz, Laura Lewin, Frank Willison. Programming Python.
O’Reilly, 2001.

Tidwell, Doug. XSLT. O’Reilly, 2001.

Thomas, Dave, Chad Fowler, Andy Hunt. Programming Ruby: The Pragmatic
Programmer’s Guide. Pragmatic Bookshelf, 2004.

Thompson, Simon. Haskell: The Craft of Functional Programming. Addison-Wesley,
1999.

Topley, Kim. Core Java Foundation Classes. Prentice Hall, 1998.

Topley, Kim. Java Web Services in a Nutshell. O’Reilly, 2003.

Wall, Larry, Tom Christiansen, Jon Orwant. Programming Perl. O’Reilly, 2000.

Walls, Craig. Spring in Action. Manning, 2004.

470 Bibliography

BIB.qxd 02/01/1904 10:05 PM Page 470

471

index

A
abstract, 356
Abstract class, 166–169
Abstract method, 167
Abstract pathname, 104
Actual parameter agreement

closures, 402
methods, 390

add, 29
addAll, 29
Ant, availability, 342
AntBuilder

compiling, 451–456
directory creation and file copy-

ing, 449–450
file scanning, 450

any, 356, 403
append, 105
Arithmetic, see Operators
as, 356
assert, 356
Assignment operator, 9
Associative array, see Map
Associativity, operators, 8, 354–355
Attribute, definition, 128

B
BigDecimal, 361
BigInteger, 361
Binding, templates, 302–304

Black box testing, 179
boolean, 356
BorderLayout manager, 284–285
BPEL, see Business Process

Execution Language
Break statement, flow of control,

78–79
break, 356
BuilderSupport, 261
Business Process Execution

Language, Groovy applica-
tions, 340

Buttons, SwingBuilder, 284–285
byte, 356

C
case, 20, 356
catch, 356
center, 20
char, 356
Character classes, 369–370
Checked exceptions, 351
Classes

class keyword, 356
composition, 135–137
definition and features, 127,

348–349
documentation, 346–347
examples

constructor method, 133–134

implicit getter and setter
methods, 129–130

lists, 131–132
methods, 130–131
redefining toString, 132–133
simple class, 128
two object instances, 129

inheritance relationship, see
Inheritance

invokeMethod, 421–423
library case study

augmentation of model,
142–147

initial model, 140–142
specification, 139–140
user interface reinstatement,

148–154
numbers, 353–354
object navigation, 413–417
operator overloading, 419–420
property changing

account example, 409
parameterized constructor, 412
private properties, 411
protected properties, 410–411
public setter methods,

412–413
static members, 417–418
unit testing, see Unit testing
visibility, 408–413

Index.qxd 02/01/1904 10:05 PM Page 471

Closures
actual parameter agreement, 402
ambiguities, 397–398
applications, 96–99
combinations of closures, collec-

tions, and ranges, 90–96,
402–403

default parameters, 399
inner class definition, 350–351
library case study implementa-

tion, 122–124
methods, 398–399
overview, 3–4, 85
recursive closures, 400–401
return statement, 404–405
return value utilization

business rules, 432–435
composition closure,

429–430
list reducing closures, 443–445
overview, 424–425
packaging, 436–443
partial application of a closure,

427–429
pattern of computation,

430–432
simple closures, 425–427

scope effects, 85–90, 399–400
static typing, 401–402
syntax, 85–90
testing, 405–407

Cloudscape database management
system, 241–242, 342

collect, 403
compare, 20
composition closure, 429–430
Compound assignment operators,

357
concat, 20
Conditional operator, 358–359
Console, 43–44, 383–385
Constructor

classes, 133–134
initialization of objects, 133

contains, 29, 35
containsKey, 33
continue, 356
Continue statement, flow of control,

79–80

countryGrouping, 275–276
createList, 348
createNewFile, 105
createNode, 457

D
DAO, see Data Access Object
Data Access Object, design, 234,

237, 241, 243
DataSet class, 227
DataSource, 235
Decrement operator, 10–11
def

closure defining, 85–87
method defining, 9, 53–55
variable defining, 356

default, 356
Default parameters

ambiguity, 391–392
closures, 399
properties, 56–57

Deferred method, 167
delete, 105
Design patterns, Swing, 281
Developer support, Groovy, 339
Dictionary, see Map
Dispatch table, 122
do, 356
doGet, 321–22
Domain model, 148
doPut, 321–22
double, 356, 361

E
each, 403
eachFile, 105
eachFileRecurse, 105, 107
eachLine, 105
eachMatch, 20
Eclipse IDE, availability, 343
else, 356
endsWith, 20
enum, 356
Equality operator, 13–14
equalsIgnore, 20
Event handlers, 286, 310–317
every, 403
Exception class, 351–352
Exclusive range, 28

exists, 105
Expressions, 354
extends, 356

F
false, 356
Files

command line arguments,
103–104

File class, 104–111
methods, 105

final, 356
finally, 356
find, 403
findAll, 403
findIndexOf, 403
flatten, 29
float, 356, 361
Floating point literal, 6, 359
Flow of control

break statement, 78–79
continue statement, 79–80
for statement, 69–71
if statement, 71–74
structures, 67
switch statement, 74–78
while statement, 67–69

for, 356
forAll, 441–443
Foreign key, 223
Formal parameters, 56
For statement, flow of control,

69–71
Functions, see Methods
Functor class, 438–440

G
Garbage, 12
GDK, see Groovy Development Kit
Generalization, see Inheritance
GET request, 320
get, 29, 33, 35
getAt, 20, 30, 33
getFrom, 35
getPath, 105
getText, 105
getTo, 35
Grails, 339
Graphical user interface builders

472 Index

Index.qxd 02/01/1904 10:05 PM Page 472

box and boxlayout classes,
296–298

dialogs, 469–472
library case study

handler implementation,
310–317

prototyping the interface,
307–310

lists, 290–294
menus

menus from lists, 464–466
simple menu, 462–464
toolbar implementation,

466–469
SwingBuilder, 281–289
tables, 294–296

greetings, 54
GridLayout manager, 282–283
Groovlet

examples, 321–327
GroovyServlet, 320
simplicity, 321

Groovy Development Kit, availabil-
ity, 342

groovy.sql, 227–229
GroovyRowResult, 232
GroovyServer Pages

comparison with JavaServer Pages,
328

examples, 328–331, 335–337
scriplets, 328

GroovyTestCase class, 181, 259,
362–364, 377–379, 405–407

GroovyTestSuite class, 187, 191,
193

GSP, see GroovyServer Pages
GUI builders, see Graphical user

interface builders

H
Handlers, see Event handlers
Hash, see Map
hmsToSeconds, 57–59

I
Identifiers, rules, 9
if, 71–73, 356
if-else, 74
implements, 356

import, 356
in, 356
Inclusive range, 28
Increment operator, 10–11
indexOf, 20
Inheritance

abstract class, 166–169
definition, 157
examples, 157–160
generalization, 157
inherited methods, 160–162
interface class, 169–172
library case study

constraint enforcement,
213–218

polymorphic effect confirma-
tion, 197–199

required functionality demon-
stration, 199–204

specification, 196
user feedback, 204–212

persistence, 233–234
polymorphism, 163–166
redefined methods, 162
specialization, 157

inject, 403
Input, simple input, 42–44
instanceof, 356
int, 356
Integer, 361
Integer literal, 6, 359
Interface class, 169–172
interface, 356
intersect, 30
Inversion of control, design pattern,

250
invokeMethod, 421–423
IoC, see Inversion of control
isDirectory, 105
isEmpty, 30
isReverse, 35

J
Java Development Kit, availability,

341
Java Virtual Machine Specification,

3, 345
JavaServer Pages

expressions, 303

functions, 328
overview, 319
scriplets, 303

JButton, 296
JDK, see Java Development Kit
JFrame, 281–282
JList, 290
JSP, see JavaServer Pages
JTable, 294
JTextField, 281, 289
JUnit TestCase class, 181
JUnit TestSuite class, 187
JVM, see Java Virtual Machine

Specification

K
keySet, 33

L
leftShift, 20, 30
length, 20
lFold, 443
Library case studies

closures and methods
implementation with closures,

122–124
specification and map imple-

mentation, 113–119
text-based user interface imple-

mentation, 119–122
graphical user interface

handler implementation,
310–317

prototyping the interface,
307–310

inheritance
constraint enforcement,

213–218
polymorphic effect confirma-

tion, 197–199
required functionality demon-

stration, 199–204
specification, 196
user feedback, 204–212

modeling
map implementation, 50–52
specification and list imple-

mentation, 47–50
objects

index 473

Index.qxd 02/01/1904 10:05 PM Page 473

augmentation of model,
142–147

initial model, 140–142
specification, 139–140
user interface reinstatement,

148–154
persistence

domain model persisting,
242–253

impact of persistence, 253–260
unit testing, 189–193
Web implementation, 333–337

List
Account classes, 131–132
combinations of closures and col-

lections, 90–96
creation, 348
definition, 3, 27
library case study, 47–49
literals, 27–28
methods, 29–31, 374–375
object identifiers, 27–28
range indices, 28

List reduction, 443–445
Logical operators, 357–358
long, 356, 361
Lookup table, 122
Loop invariant, 215

M
Map

combinations of closures and col-
lections, 90–96

definition, 3, 31
keys, 31–33
library case studies, 50–52,

113–119
literals, 31–32
methods, 33–34

MappingSqlQuery, 235–236
mapRow, 231–232
MarkupBuilder, 263–266, 271,

324
matches, 20
Menu building

menus from lists, 464–466
simple menu, 462–464
toolbar implementation, 466–469

Metacharacters, 365–370

Meta-object protocol, 261
Method parameters, 56, 62–63
Methods, see also specific objects

actual parameter agreement, 390
class membership, 347
collections as method parameters

and return values, 62–63,
393–396

defining, 53–55
overloading, 391
parameters

default parameters, 56–57,
391–392

overview, 56
passing strategies, 59–60

recursive methods, 386–388
redefined methods, 162
return values, 57–59
scope of variables, 61–62
static typing, 362, 388–390

minus, 20, 30
mkdir, 105
Mock Object testing, 217
Model–View–Controller (MVC)

architecture, 290–291, 333
MonitorBuilder, 457–459
MOP, see Meta-object protocol
MVC, see Model–View–Controller

N
name, 59–60
native, 356
new, 356
next, 20
null, 356
Numbers

operators, 6–8
types in Groovy, 6

O
Object, references, 11–12
Operator overloading, 5, 419–420
Operators

assignment operator, 9
associativity, 8, 354–355
compound assignment operators,

357
conditional operator, 358–359
decrement operator, 10–11

equality operator, 13–14
increment operator, 10–11
logical operators, 357–358
number manipulation, 6–8
precedence, 8
relational operator, 13
spread operator, 376–377

Output
formatted output, 41–42,

380–382
print statements, 39–42
simple output, 39–40

P
package, 356
Packaging, closures, 436–443
padLeft, 21
padRight, 21
Parameter matching, 391
Partial application, closure, 427–429
Pass by value, 59
Pathname strings, 104
Pattern of computation, closures,

430–432
Persistence

database updates, 226–230
definition, 221
inheritance, 233–234
library case study

domain model persisting,
242–253

impact of persistence, 253–260
objects from tables, 231–233
relations, 223–226
simple queries, 221–223
Spring framework, 234–238

plus, 21, 30
Polymorphic effect, 163–166,

197–199, 349–350
pop, 30
Postdecrement operator, 10
Postincrement operator, 10
Predecrement operator, 10
Preincrement operator, 10
previous, 21
Primary key, 223
Principle of substitution, 165
Print, see Output
private, 356

474 Index

Index.qxd 02/01/1904 10:05 PM Page 474

Procedural approach, case study,
114–115

Procedures, see Methods
processTime, 61
Property, concept, 3
protected, 356
public, 356
PUT request, 320
put, 33
putAt, 30, 33

R
Rails, 339–340
Range

combinations of closures and col-
lections, 90–96

literals, 34, 376
methods, 35, 376

readDouble, 43
readInteger, 43
readLine, 42
readString, 43, 385
Recursive closures, 400–401
Recursive methods, 386–388
Reference, object and variable link-

ing, 11
regex, 23–25
Regular expressions

alternation, 370
grouping, 371–372
match at beginning, 367
match at end, 367
match none or one, 368
match number, 369–369
match one or more, 368
match zero or more, 367–368
metacharacters, 365–366
miscellaneous notations, 370
overview, 23–25
single character match, 366–367

Relational operator, 13
remove, 30
replaceAll, 21
Return statement, 404–405
Return values, 57–59, 62–63
return, 356
return expression, 57
reverse, 21, 30
reverseEach, 403

rFold, 443
Ruby, 339–340

S
Scripting languages

advantages, 2
applications, 2

Servers, see Web servers
Servlet, 319–320
setUp, 183–185
Sharing, variables referencing same

object, 11
short, 356
SimpleTemplateEngine, 302–303
size, 21, 30, 33, 35
Slicing, strings, 18
someMethod, 57
sort, 30, 403
Specialization, see Inheritance
split, 21
Spread operator, 376–377
Spring

availability, 342–343
framework, 234–238
Groovy application prospects,

339–340
library case study, 241–260

SQL, see Structured Query Language
StaffBuilder, 262
staffEntry, 71
staffList, 290
Static typing, 362, 388–390,

401–402
static, 356
strictfp, 356
String

combinations of closures and col-
lections, 90–96

comparison, 23
immutability, 19
indexing, 18
literals, 17–18
methods, 19–23
operations, 19
regular expressions

alternation, 370
grouping, 371–372
match at beginning, 367
match at end, 367

match none or one, 368
match number, 369–369
match one or more, 368
match zero or more, 367–368
metacharacters, 365–366
miscellaneous notations, 370
overview, 23–25
single character match,

366–367
slicing, 18–19
template engines, 301

Structured Query Language
delete statement, 226
insert statement, 226
persistence of data

database updates, 226–230
inheritance, 233–234
objects from tables, 231–233
relations, 223–226
simple queries, 221–223
Spring framework, 234–238

specialized builders, 459–461
subList, 35
Subroutines, see Methods
substring, 21
super, 356
SwingBuilder

buttons, 284–285
event handlers, 286–288
GridLayout manager, 282–283
imperial to metric converter,

288–289
incremental assembly, 284
pseudomethods, 281
simple application, 281–282

switch, 74–78, 356
synchronized, 356
Systems programming languages,

applications, 1

T
Table, see Map
Template engines

mapping values for single tem-
plate, 302–303

strings, 301
template instantiation from data-

base, 305–306
Template method, 231

index 475

Index.qxd 02/01/1904 10:05 PM Page 475

Testing, see Unit testing
testToString, 182
thereExists, 440
this, 356
threadsafe, 356
throw, 356
throws, 356
toCharacter, 21
toDouble, 21
toFloat, 21
ToIgnoreCase, 20
toInteger, 21
tokenize, 21
toList, 21
toLong, 21
toLowerCase, 21
Tomcat server, availability, 343
toString, 132–133
toUpperCase, 21
transient, 356
true, 356
try, 356

U
Unchecked exceptions, 352
Unit testing

black box testing, 179
GroovyTestCase class, 181,

362–364, 377–379,
405–407

GroovyTestSuite class, 187
JUnit TestCase class, 181
JUnit TestSuite class, 187
roles, 189–193
test fixture, 183
test scripts, 180
white box testing, 179

V
values, 33
Variable

conversions, 359–361
definition, 355–356
static typing, 362

void, 356
volatile, 356

W
wc, implementation in Groovy,

106
Weak typing, scripting languages, 2
Web servers, see also JavaServer Pages

Groovlets, 320–327
GroovyServer pages, 328–331
library case study, 333–337
servlets, 319–320

While statement, flow of control,
67–68

while, 356
White box testing, 179
with, 356
withInputStream, 109
withOutputStream, 109
withPrintWriter, 105, 108
withReader, 109
withWriter, 109

X
XML

Groovy markup
builders, 261
Markupbuilder, 263–266,

271
syntax, 262–263

parsing with XmlParser,
266–278

476 Index

Index.qxd 02/01/1904 10:05 PM Page 476

	Contents
	Foreword
	Preface
	About the authors
	groovy
	why scripting?
	why groovy?

	numbers and expressions
	numbers
	expressions
	operator precedence
	assignment
	increment and decrement operators
	object references
	relational and equality operators
	exercises

	strings and regular expressions
	string literals
	string indexing and slicing
	basic operations
	string methods
	string comparison
	regular expressions
	exercises

	lists, maps, and ranges
	lists
	list methods
	maps
	map methods
	ranges
	exercises

	simple input and output
	simple output
	formatted output
	simple input
	exercises

	case study: a library application(modeling)
	iteration 1: specification and list implementation
	iteration 2: map implementation
	exercises

	methods
	methods
	method parameters
	default parameters
	method return values
	parameter passing
	scope
	collections as method parameters and return values
	exercises

	flow of control
	while statement
	for statement
	if statement
	switch statement
	break statement
	continue statement
	exercises

	closures
	closures
	closures, collections, and strings
	other closure features
	exercises

	files
	command line arguments
	file class
	exercises

	case study: a library application methods, closures . .
	iteration 1: specification and map implementation
	11.2 iteration 2: implementation of a text-based user interface
	iteration 3: implementation with closures
	exercises

	classes
	classes
	composition
	exercises

	case study: a library application . objects.
	specification
	iteration 1: an initial model
	iteration 2: augment the model
	iteration 3: reinstate the user interface
	exercises

	inheritance
	inheritance
	inherited methods
	redefined methods
	polymorphism
	the abstract class
	the interface class
	exercises

	unit testing . junit.
	unit testing
	the groovytestcase and junit testcase classes
	the groovytestsuite and junit testsuite classes
	the role of unit testing
	exercises

	case study: a library application . inheritance.
	specification
	iteration 1: confirm the polymorphic effect
	iteration 2: demonstrate the required functionality
	iteration 3: provide user feedback
	iteration 4: enforce constraints
	exercises

	persistence
	simple queries
	relations
	17.3 database updates
	objects from tables
	inheritance
	the spring framework
	exercises

	case study: a library application . persistence.
	iteration 1: persist the domain model
	iteration 2: the impact of persistence
	exercises

	xml builders and parsers
	groovy markup
	markupbuilder
	xml parsing
	exercises

	gui builders
	swingbuilder
	lists and tables
	box and boxlayout classes
	exercises

	template engines
	strings
	templates
	exercises

	case study: a library application . gui.
	iteration 1: prototype the gui
	iteration 2: implement the handlers
	exercises

	server-side programming
	servlets
	groovlets
	gsp pages
	exercises

	case study: a library application . web.
	iteration 1: web implementation
	exercise

	epilogue
	Appendix A - software distribution
	the java development kit
	the groovy development kit
	ant
	the derby/cloudscape database
	the spring framework
	the tomcat server
	eclipse ide
	the textbook sources

	Appendix B - groovy
	simple and elegant
	methods
	lists
	classes
	polymorphism
	closures
	exceptions

	Appendix C - more on numbers and expressions
	classes
	expressions
	operator associativity
	variable definitions
	compound assignment operators
	logical operators
	conditional operator
	qualified numeric literals
	conversions
	static typing
	testing

	Appendix D - more on strings and regular expressions
	regular expressions
	single character match
	match at the beginning
	match at the end
	match zero or more
	match one or more
	match none or one
	match number
	character classes
	alternation
	miscellaneous notations
	grouping

	Appendix E - more on lists, maps, and ranges
	classes
	lists
	ranges
	the spread operator
	testing

	Appendix F - more on simple input and output
	formatted output
	console class

	Appendix G - more on methods
	recursive methods
	static typing
	actual parameter agreement
	method overloading
	default parameter ambiguity
	collections as method parameters and return values

	Appendix H - more on closures
	closures and ambiguity
	closures and methods
	default parameters
	closures and scope
	recursive closures
	static typing
	actual parameter agreement
	closures, collections, and ranges
	return statement
	testing

	Appendix I - more on classes
	properties and visibility
	object navigation
	static members
	operator overloading
	the invokemethod
	exercises

	Appendix J - advanced closures
	simple closures
	partial application
	composition
	patterns of computation
	business rules
	packaging
	list reduction
	exercises

	Appendix K - more on builders
	antbuilder
	specialized builders

	Appendix L - more on gui builders
	menus and toolbars
	dialogs

	bibliography
	index

